## There's Someting About Primitive Polynomials

#### Paul Stankovski

A polynomial  $f(x) \in \mathbb{F}_p[x]$  is a primitive polynomial of a finite field extension  $\mathbb{F}_{p^k}$  if it has degree k and has a root  $\alpha \in \mathbb{F}_{p^k}$   $(f(\alpha) = 0)$  that generates all non-zero elements of  $\mathbb{F}_{p^k}$  (by iterating  $\{\alpha, \alpha^2, \alpha^3, \ldots\}$ ).

A primitive polynomial must necessarily be irreducible, but all irreducible polynomials are not primitive.

A somewhat longer explanation follows below.

#### **1** Finite Field Basics

A finite field  $\mathbb{F}_q$  of order (the number of elements) q exists if and only if q is a prime power  $p^k$  (p is prime, k is a positive integer).

All finite field of the same order are isomorphic. That is, even if two finite field of the same order are represented differently, they still *are* the same field. While the elements may have been relabeled from one representation to another, they still behave the same way.

The non-zero elements (all except the zero) of a finite field form a multiplicative group that is cyclic, so this group can be generated by one single element.

#### 2 Finite Fields $\mathbb{F}_p$ of Prime Order

Finite fields  $\mathbb{F}_p$  of prime order behave exactly like  $\mathbb{Z}/p\mathbb{Z}$  (the integers modulo p). These are isomorphic.

### 3 Finite Fields $\mathbb{F}_{p^k}$ of Prime Power Order

Finite fields  $\mathbb{F}_{p^k}$  of prime power order (with  $k \geq 2$ ) do not behave like the integers modulo  $p^k$ . Instead, we can "expand"  $\mathbb{F}_p$  by constructing an extension field  $\mathbb{F}_{p^k}$  using polynomials in a special way. We do this because that is how  $\mathbb{F}_{p^k}$  does behave, like this somewhat special bunch of polynomials.

As an example, consider  $\mathbb{F}_{2^4} = \mathbb{F}_{16}$ . Using the primitive<sup>1</sup> polynomial  $f(x) = x^4 + x + 1$ , we can construct  $\mathbb{F}_{2^4}$  as  $\mathbb{F}_2[x]/\langle f(x)\rangle = \mathbb{F}_2[x]/\langle x^4 + x + 1\rangle$ . That

<sup>&</sup>lt;sup>1</sup>Keep reading, it will be explained below.

is, our finite field elements can be represented by polynomials over  $\mathbb{F}_2$  that are taken modulo the polynomial f(x).

The polynomial f(x) corresponds to the zero element, so we can write

 $x^4 + x + 1 = 0,$ 

which we can also express as a rule for reducing exponents in our polynomials according to

$$x^4 = x + 1.$$

Using this rule, we can reduce every polynomial of degree 4 or higher to a degree of 3 or less. The elements of  $\mathbb{F}_2[x]/\langle x^4 + x + 1 \rangle$  are the polynomials

$$a_3x^3 + a_2x^2 + a_1x + a_0,$$

where all  $a_i \in \mathbb{F}_2$ . With four such  $a_i$ , and each taking the values 0 or 1, there are  $2^4 = 16$  different polynomials/elements.

Addition and multiplication on these polynomials are performed "as usual", with the additional reduction step at the end to reduce the degree if necessary.

# 4 Multiplication Table for $\mathbb{F}_2[x]/\langle x^4+x+1\rangle$

Now, letting the symbol  $\alpha$  denote a zero of f(x), so that  $f(\alpha) = 0$ , we can write the reduction rule above as

$$\alpha^4 = \alpha + 1.$$

We can also use the symbol  $\alpha$  to write a multiplication table for  $\mathbb{F}_2[x]/\langle x^4 + x + 1 \rangle$ .

$$\begin{split} &1, \\ &\alpha, \\ &\alpha^2, \\ &\alpha^3, \\ &\alpha^4 = \alpha + 1, \\ &\alpha^5 = \alpha^2 + \alpha, \\ &\alpha^6 = \alpha^3 + \alpha^2, \\ &\alpha^7 = \alpha^4 + \alpha^3 = \alpha^3 + \alpha + 1, \\ &\alpha^8 = \alpha^4 + \alpha^2 + \alpha = \alpha^2 + 1, \\ &\alpha^9 = \alpha^3 + \alpha, \\ &\alpha^{10} = \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1, \\ &\alpha^{11} = \alpha^3 + \alpha^2 + \alpha, \\ &\alpha^{12} = \alpha^4 + \alpha^3 + \alpha^2 = \alpha^3 + \alpha^2 + \alpha + 1 \\ &\alpha^{13} = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = \alpha^3 + \alpha^2 + 1 \\ &\alpha^{14} = \alpha^4 + \alpha^3 + \alpha = \alpha^3 + 1, \\ &\alpha^{15} = \alpha^4 + \alpha = 1. \end{split}$$

Note that we cycle through after 15 iteration, returning to 1 with  $\alpha^{15}$ . If all non-zero elements (15 out of the 16 in  $\mathbb{F}_{16}$  in this case) can be generated in this way, then the polynomial f(x) is *primitive*.

Replacing  $\alpha$  with x, one can see that all non-zero polynomials over  $\mathbb{F}_2$  with degree 3 or lower are present. The non-zero elements form a cyclic subgroup (under multiplication), and every such element can be expressed as a power of x. One way of multiplying, say,  $x^3 + x^2 + 1$  with  $x^2 + x + 1$  is to realize that they equal  $x^{13}$  and  $x^{10}$ , respectively, so their product is  $x^{13+10} = x^{23}$ , and we get

$$x^{23} = x^8 = x^2 + 1$$

simply by reducing the exponent modulo 15 and peeking into our multiplication table.

If we would have chosen a polynomial that is not primitive, then we would have cycled though earlier. In this case, since a subgroup must divide the order of the entire group, we would have found that either  $\alpha^3 = 1$  or  $\alpha^5 = 1$ .

If you are merely interested in finding out if a given polynomial is primitive, then it suffices to cycle through to the largest proper divisor of q - 1. In our example above, when we have shown that  $\alpha^5 = \alpha^2 + \alpha \neq 1$ , then we know that the polynomial is primitive, since the "next" opportunity for a full cycle is at  $\alpha^{15}$ .