Projects in Wireless Communication Carrier Transmission

Fredrik Tufvesson

Department of Electrical and Information Technology

Lund University, Sweden

Lund, Fall 2024

The transmitted signal is $y(t) = \sum_k a_k h(t - kT)$.

What is the bandwidth? More generally, what is its Fourier transform?

Table 1: Properties of the Fourier transform.

The baseband signal is $y(t) = \sum_k a_k h(t - kT)$. The power spectral density of the transmission is $\propto |H(f)|^2$

LUND UNIVERSITY

The baseband signal is $y(t) = \sum_k a_k h(t - kT)$. The power spectral density of the transmission is $\propto |H(f)|^2$

The carrier modulated signal is $y_m(t) = y(t) \cos(2\pi t f_c)$

The baseband signal is $y(t) = \sum_k a_k h(t - kT)$. The power spectral density of the transmission is $\propto |H(f)|^2$

The carrier modulated signal is $y_m(t) = y(t) \cos(2\pi t f_c)$ But bandwidth gets twice as large!

Where did the energy go?

Basic Fourier relations:

$$
\cos(2\pi f_c t)h(t) \longleftrightarrow \frac{1}{2}H(f - f_c) + \frac{1}{2}H(f + f_c)
$$

$$
\sin(2\pi f_c t)h(t) \longleftrightarrow \frac{i}{2}H(f - f_c) - \frac{i}{2}H(f + f_c)
$$

Where did the energy go?

Basic Fourier relations:

$$
\cos(2\pi f_c t)h(t) \longleftrightarrow \frac{1}{2}H(f - f_c) + \frac{1}{2}H(f + f_c)
$$

$$
\sin(2\pi f_c t)h(t) \longleftrightarrow \frac{i}{2}H(f - f_c) - \frac{i}{2}H(f + f_c)
$$

The $1/2$ factor corresponds to a $1/4$ of the energy. Since there are two terms, $1/2$ of the energy is preserved.

Where did the energy go?

Basic Fourier relations:

$$
\cos(2\pi f_c t)h(t) \longleftrightarrow \frac{1}{2}H(f - f_c) + \frac{1}{2}H(f + f_c)
$$

$$
\sin(2\pi f_c t)h(t) \longleftrightarrow \frac{i}{2}H(f - f_c) - \frac{i}{2}H(f + f_c)
$$

The $1/2$ factor corresponds to a $1/4$ of the energy. Since there are two terms, $1/2$ of the energy is preserved.

What about the increased bandwidth?

Assume two independent baseband transmissions

Assume two independent baseband transmissions After modulation with $\cos(2\pi t f_c)$ and $\sin(2\pi t f_c)$ we get

Assume two independent baseband transmissions After demodulation with $\cos(2\pi t f_c)$ we get

The red spectras around $f=0$ cancel out, thus, we can detect the blue independently from the red. Equivalent for demodulation with $sin(2\pi t f_c)$

Tufvesson/Rusek: PWC, EITN21, Lecture 2 Fall 2024

LUND UNIVERSITY

The block diagram of the transmitter is

$$
y(t) = y_I(t)\cos(2\pi f_c t) - y_Q(t)\sin(2\pi f_c t)
$$

The block diagram of the receiver is

The in-phase and the quadrature components can be independently detected! The LPF (low pass filters) can be taken as a matched filter to $h(t)$

The signals at both rails are baseband signals, and conventional processing follows: matched filter \rightarrow sampling every T_s second \rightarrow decision unit

What is a complex-valued symbol $1+i$?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

$$
y(t) = \underbrace{h(t)}_{y_I(t)} \cos(2\pi f_c t) - \underbrace{h(t)}_{y_Q(t)} \sin(2\pi f_c t)
$$

What is a complex-valued symbol $1+i$?

In QPSK, we transmit complex valued symbols. In one symbol interval, we have

$$
y(t) = \underbrace{h(t)}_{y_I(t)} \cos(2\pi f_c t) - \underbrace{h(t)}_{y_Q(t)} \sin(2\pi f_c t)
$$

We can alternatively express the signal $y(t)$ as

$$
y(t) = y_I(t) \cos(2\pi f_c t) - y_Q(t) \sin(2\pi f_c t)
$$

= $e(t) \cos(2\pi f_c t + \theta(t))$

where $e(t)$ is the envelope and $\theta(t)$ is the phase

For QPSK, $e(t) = \sqrt{2}h(t)$ and $\theta(t) \in \{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$

We can further manipulate $y(t)$ into

$$
y(t) = \text{Re}\{(y_I(t) + iy_Q(t))e^{i2\pi f_c t}\}\
$$

$$
= \text{Re}\{\tilde{y}(t)e^{i2\pi f_c t}\}\
$$

where

$$
\tilde{y}(t)=y_I(t)+iy_Q(t)
$$

Assume that we have two bits to transmit, say $+1$ and -1 .

Assume that we have two bits to transmit, say $+1$ and -1 .

We can either do this as

$$
y(t) = h(t)\cos(2\pi f_c t) - (-h(t))\sin(2\pi f_c t)
$$

Assume that we have two bits to transmit, say $+1$ and -1.

We can either do this as

$$
y(t) = h(t)\cos(2\pi f_c t) - (-h(t))\sin(2\pi f_c t)
$$

or as

$$
y(t) = \sqrt{2h(t)\cos(2\pi f_c t + 7\pi/4)}
$$

Assume that we have two bits to transmit, say $+1$ and -1.

We can either do this as

$$
y(t) = h(t)\cos(2\pi f_c t) - (-h(t))\sin(2\pi f_c t)
$$

or as

$$
y(t) = \sqrt{2h(t)\cos(2\pi f_c t + 7\pi/4)}
$$

or as

$$
y(t) = \text{Re}\{(1-i)h(t)e^{i2\pi f_c t}\}\
$$

In the last representation, we can change the receiver processing into

