

Project in Wireless Communication Lecture 2, IQ modulation

FREDRIK TUFVESSON, FREDRIK RUSEK ELECTRICAL AND INFORMATION TECHNOLOGY

System model

We want to represent the outputs as functions of the inputs Note that the receiver and transmitter are not synchronous

2

Models of input and channel

The transmitted signal y(t) equals

$$y(t) = y_I(t)\cos(\omega_c t) - y_Q(t)\sin(\omega_c t).$$

Similarly, the channel impulse response can be expressed as

$$h(t) = h_I(t)\cos(\omega_c t) - h_Q(t)\sin(\omega_c t).$$

To evaluate r(t) = y(t) * h(t), we consider the signals in the Fourier domain:

$$R(f) = Y(f)H(f)$$

= $\frac{1}{4} [Y_I(f + f_c) + Y_I(f - f_c) + \jmath Y_Q(f + f_c) - \jmath Y_Q(f - f_c)]$
 $\times [H_I(f + f_c) + H_I(f - f_c) + \jmath H_Q(f + f_c) - \jmath H_Q(f - f_c)]$

Now observe that a product of the type $Y_{I/Q}(f \pm f_c)H_{I/Q}(f \mp f_c) = 0$

$$R(f) = \frac{1}{4} \left[Y_I(f+f_c) H_I(f+f_c) + j Y_I(f+f_c) H_Q(f+f_c) + Y_I(f-f_c) H_I(f-f_c) \right]$$

$$-j Y_I(f-f_c) H_Q(f-f_c) + j Y_Q(f+f_c) H_I(f+f_c) - Y_Q(f+f_c) H_Q(f+f_c) + j Y_Q(f-f_c) H_Q(f-f_c) \right]$$

5

$$R(f) = \frac{1}{4} [Y_{I}(f + f_{c})H_{I}(f + f_{c}) + jY_{I}(f + f_{c})H_{Q}(f + f_{c}) + Y_{I}(f - f_{c})H_{I}(f - f_{c})] + jY_{Q}(f - f_{c})H_{I}(f + f_{c}) - Y_{Q}(f + f_{c})H_{Q}(f + f_{c}) + jY_{Q}(f - f_{c})H_{I}(f + f_{c}) - Y_{Q}(f - f_{c})H_{Q}(f - f_{c})]$$

By identifying terms, we get that

$$\begin{aligned} r(t) &= \tilde{r}_I(t) \cos(\omega_c t) - \tilde{r}_Q(t) \sin(\omega_c t), \\ \tilde{r}_I(t) &= \frac{1}{2} [y_I(t) * h_I(t) - y_Q(t) * h_Q(t)] \end{aligned}$$

with

and

$$\tilde{r}_Q(t) = \frac{1}{2} [y_I(t) * h_Q(t) + y_Q(t) * h_I(t)].$$

6

and

$$\tilde{r}_Q(t) = \frac{1}{2} [y_I(t) * h_Q(t) + y_Q(t) * h_I(t)].$$

$$\begin{split} R(f) &= \frac{1}{4} \left[Y_{I}(f+f_{c})H_{I}(f+f_{c}) + jY_{I}(f+f_{c})H_{Q}(f+f_{c}) + Y_{I}(f-f_{c})H_{I}(f-f_{c}) \right. \\ &- jY_{I}(f-f_{c})H_{Q}(f-f_{c}) + jY_{Q}(f+f_{d})H_{I}(f+f_{c}) - Y_{Q}(f+f_{c})H_{Q}(f+f_{c}) \right. \\ &- jY_{Q}(f-f_{c})H_{L}(f+f_{c}) - Y_{Q}(f-f_{c})H_{Q}(f-f_{c}) \right] \\ By identifying terms, we get that \\ r(t) &= \tilde{r}_{I}(t)\cos(\omega_{c}t) - \tilde{r}_{Q}(t)\sin(\omega_{c}t), \\ with \\ \tilde{r}_{I}(t) &= \frac{1}{2} [y_{I}(t) * h_{I}(t) - y_{Q}(t) * h_{Q}(t)] \\ and \\ \tilde{r}_{Q}(t) &= \frac{1}{2} [y_{I}(t) * h_{Q}(t) + y_{Q}(t) * h_{I}(t)]. \end{split}$$

8

$$\begin{split} R(f) &= \frac{1}{4} \left[Y_{I}(f+f_{c})H_{I}(f+f_{c}) + jY_{I}(f+f_{c})H_{Q}(f+f_{c}) + Y_{I}(f-f_{c})H_{I}(f-f_{c}) \\ &- jY_{I}(f-f_{c})H_{Q}(f-f_{c}) + jY_{Q}(f+f_{c})H_{I}(f+f_{c}) - Y_{Q}(f+f_{c})H_{Q}(f+f_{c}) \\ &- jY_{Q}(f-f_{c})H_{I}(f+f_{c}) - Y_{Q}(f-f_{c})H_{Q}(f-f_{c})\right] \\ By \ \text{identifying terms, we get that} \\ r(t) &= \tilde{r}_{I}(t)\cos(\omega_{c}t) - \tilde{r}_{Q}(t)\sin(\omega_{c}t), \\ \text{with} \\ \tilde{r}_{I}(t) &= \frac{1}{2}[y_{I}(t)*h_{I}(t) - y_{Q}(t)*h_{Q}(t)] \\ \text{and} \\ \tilde{r}_{Q}(t) &= \frac{1}{2}[y_{I}(t)*h_{Q}(t) + y_{Q}(t)*h_{I}(t)]. \end{split}$$

Basic trigonometric properties

$$\cos(x)\cos(y) = \frac{1}{2}[\cos(x+y) + \cos(x-y)]$$

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

$$\sin(x)\sin(y) = \frac{1}{2}[\cos(x+y) - \cos(x-y)]$$

Signal at upper rail equals $\begin{bmatrix} \tilde{r}_I(t)\cos(\omega_c t) - \tilde{r}_Q(t)\sin(\omega_c t) \end{bmatrix} \cos(\omega_c t + \phi) = \\
\frac{1}{2} \begin{bmatrix} \tilde{r}_I(t)[\cos(2\omega_c t + \phi) + \cos(\phi)] - \tilde{r}_Q(t)[\sin(2\omega_c t + \phi) - \sin(\phi)] \end{bmatrix}$

Remove by low pass filtering

We get that

$$r_{I}(t) = \frac{1}{2} \left[\tilde{r}_{I}(t) \cos(\phi) + \tilde{r}_{Q}(t) \sin(\phi) \right]$$

= $\frac{1}{4} \left[(y_{I}(t) * h_{I}(t) - y_{Q}(t) * h_{Q}(t)) \cos(\phi) + (y_{I}(t) * h_{Q}(t) + y_{Q}(t) * h_{I}(t))) \sin(\phi) \right]$

and

$$r_Q(t) = \frac{1}{4} \left[-(y_I(t) * h_I(t) - y_Q(t) * h_Q(t)) \sin(\phi) + (y_I(t) * h_Q(t) + y_Q(t) * h_I(t)) \cos(\phi) \right]$$

12

Now construct the two complex valued signals

$$y^{c}(t) \triangleq y_{I}(t) + \jmath y_{Q}(t)$$

and

$$r^{c}(t) \triangleq r_{I}(t) + \jmath r_{Q}(t).$$

By identifying some terms we can conclude that

$$r^c(t) = y^c(t) * h^c(t),$$

with $h^c(t) \triangleq h_I(t)\cos(\phi) + h_Q(t)\sin(\phi) + j(h_Q(t)\cos(\phi) - h_I(t)\sin(\phi)).$

Final result

This can be modeled in the complex baseband as

14

Final result

 $h^{c}(t) \triangleq h_{I}(t)\cos(\phi) + h_{Q}(t)\sin(\phi) + j(h_{Q}(t)\cos(\phi) - h_{I}(t)\sin(\phi)).$

$$y^{c}(t) = y_{I}(t) + \jmath y_{Q}(t)$$
 channel $r^{c}(t) = r_{I}(t) + \jmath r_{Q}(t)$

$$r^c(t) = y^c(t) \star h^c(t)$$

15

What is the effect of ϕ ?

 $h^{c}(t) \triangleq h_{I}(t)\cos(\phi) + h_{Q}(t)\sin(\phi) + j(h_{Q}(t)\cos(\phi) - h_{I}(t)\sin(\phi)).$

Energy of the impulse response

$$\int_{-\infty}^{\infty} |h^c(t)|^2 dt = \int_{-\infty}^{\infty} h_I^2(t) + h_Q^2(t) dt$$

The energy is independent of ϕ ! It doesn't matter if Tx and Rx are not synchronous

Conclusion

We can always work in the complex baseband domain with the input/output relation

$$r^c(t) = y^c(t) \star h^c(t) + n^c(t)$$

And we do not care about ϕ (it must be estimated though)

LUND UNIVERSITY