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Project overview, part two:

the audio channel

Part two is divided into two tasks

Task 1 – the basic link: Implement an OFDM system and 
send a data sequence from one computer to the other via 
the audio channel and decode.

Task 2 – the advanced link: Implement the packet based 
full duplex system on the audio channel with ARQ.

• Deadline is Sunday Dec 1, 2024 for part two 
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Project overview, the audio channel

System should include:

• OFDM, minimum 64 carriers, 

– 75-80% active, 25-20% outer channels inactive

• Four sub-channels for continuous pilot symbols, and a preamble

• Packet based system

• ARQ, i.e., receiver should send ACK/NACK for each packet.

• Re-transmissions of the incorrectly received packets

• Cyclic redundancy check (CRC) code

• Minimum bit-rate during transmissions: 0.5 kbit/s

• Convolutional code is optional (you need to find out yourself if you 
need it or not), MIMO could be considered

• Minimum size of file: 20 kbits

• Max packet length: 1 kbits
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Project overview, part three:

the radio channel

Implement a basic OFDM based file transfer system over 

the radio channel using the ADALM Pluto SDR

Part three is also divided into two tasks

Task 1 – the basic link: Implement an OFDM 

transceiver and send a file between the Tx and Rx part 

of the same Pluto SDR.

Task 2 – the advanced link: Transfer the file from one 

Pluto to another Pluto over the radio channel.

• Deadline is Friday Jan 5, 2024 for part three, 

oral presentation of reports Jan 7-10
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A problem to be encountered in Matlab

One particular problem is that in Matlab, one have to record 

sound for a pre-defined amount of time. 

Since this is a ”Matlab-problem” and not a ”communication-

theory-problem”, you are allowed to make use of the built in 

clock-function in matlab. The internal clocks of the receiver and 

the transmitter are allowed to be synchronized with each other.

If you choose to use C/C++/Python, this problem is completely 

alleviated since one can then record sound ”until something 

happens” – for example ”until there is no sound to record”. You 

can also start recording when ”there is something to record

However, the overhead of using C/C++/Python is rather large if 

you are not experienced. 
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Some tips and tricks

• Plot the signals you are transmitting, do they look as you 

intended?

• Plot the received signal, can you see it visually?

• Make a scatter plot of the received constellation, does it 

make sense?

• Think about a suitable carrier frequency and bandwidth 

before starting to code 

• Verify your code after each step

• Use external, cable connected, microphone and loud 

speaker, verify your hardware settings in the computer
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Cyclic redundancy check, CRC

A CRC is used for error detection, not for error correction.

Example: Single parity check bit

Suppose one wants to transmit the 5 bits

[0 0 1 0 1]

If one receives the bits 

[0 0 0 0 1]

This error will pass by un-detected.
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CRC Example: Single parity check bit

Suppose one wants to transmit the 5 bits

[0 0 1 0 1]

If one receives the bits 

[0 0 0 0 1]

This error will pass by un-detected.

We can fix this by adding a single parity bit so that the total number of 

1s is always even.

We then have

[0 0 1 0 1 0]

know that there has been 1 bit error on the channel, and we will ask for a re-

transmission

Parity bit

Total number of 1s = even
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CRC Example: Single parity check bit

Suppose one wants to transmit the 5 bits

[0 0 1 0 1]

If one receives the bits 

[0 0 0 0 1]

This error will pass by un-detected.

We can fix this by adding a single parity bit so that the total number of 

1s is always even.

We then have [0 0 1 0 1 0]

If we receive [0 0 0 0 1 0]

we know that there has been 1 bit error on the channel, and 

we will ask for a re-transmission

Parity bit

Total number of 1s = odd 

-> not correct
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CRC

The previous example was just meant as illustration, and in reality, much

more advanced systems are used. But, they are based upon the same 

principle!

Suppose that we should send K bits, [u0... uK-1]. We denote these by the 

D-transform

u 𝐷 ≝ 𝑢𝐾−1𝐷𝐾−1 + 𝑢𝐾−2𝐷𝐾−2 + ⋯ + 𝑢0

Hence, 1 + 𝐷 + 𝐷6 = [1 1 0 0 0 0 1] etc etc

The powers of the indeterminate D can be thought of as keeping track of 

which bit is which. The CRC is represented by another polynomial,

c 𝐷 ≝ 𝑐𝐿−1𝐷𝐿−1 + 𝑐𝐿−2𝐷𝐿−2 + ⋯ + 𝑐0

The entire frame of data and CRC is then 𝑥 𝐷 = 𝑢 𝐷 𝐷𝐿 + 𝑐(𝐷), that is

𝑥 𝐷 ≝ 𝑢𝐾−1𝐷𝐿+𝐾−1 + 𝑢0𝐷𝐿 + 𝑐𝐿−1𝐷𝐿−1 … + 𝑐0
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How to find c(D)?

The check bits c(D) depend of course on the information bits u(D). 

Question: How to find the check bits c(D) 

given a particular set of information bits u(D) 

in a structured fashion?

Question: How to find the check bits c(D) 

given a particular set of information bits u(D) 

in a structured fashion?
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How to find c(D)?

Define a generator polynomial g(D) of degree L

𝑔 𝐷 ≝ 𝐷𝐿 + 𝑔𝐿−1𝐷𝐿−1 + ⋯ + 𝑔1𝐷 + 1

For a given generator polynomial, g(D), the mapping from 

the information bits, u(D), to the CRC, c(D), is given by

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+

+Find remainder of 𝑫𝟓 + 𝑫𝟑 𝒅𝒊𝒗𝒊𝒅𝒆𝒅 𝒘𝒊𝒕𝒉 𝑫𝟑 + 𝑫𝟐 + 𝑫
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+

+
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Long Division

𝑐 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑢(𝐷)𝐷𝐿

𝑔(𝐷)

• This is just an ordinary long division of one polynomial with another.

• All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.

• Subtraction using modulo 2 arithmetic is the same as addition

Example:
𝐷2 + 𝐷

𝐷3 + 𝐷2 + 1 𝐷5 + 𝐷3

𝐷5 + 𝐷4 + 𝐷2

𝐷4 + 𝐷3 + 𝐷2

𝐷4 + 𝐷3 + 𝐷
𝐷2 + 𝐷 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

+

+

𝑫𝟓 + 𝑫𝟑 = 𝑫𝟐 + 𝑫 𝑫𝟑 + 𝑫𝟐 + 𝟏 + (𝑫𝟐 + 𝑫)

quotient
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CRC

Let z(D) denote the quotient. We then have:

𝑢 𝐷 𝐷𝐿 = 𝑔 𝐷 𝑧 𝐷 + 𝑐 𝐷

Subtract c(D) from both sides and use ”+” = ”-” in modulo 2 

arithmetic

𝑥 𝐷 = 𝑢 𝐷 𝐷𝐿 + 𝑐 𝐷 = 𝑔 𝐷 𝑧(𝐷)

Thus, all valid code words x(D) are divisible by the 

generator polynomial g(D)

Tufvesson/Rusek, EITN21, PWC lecture 6, fall 2024 19



Receiver operation

Assume x(D) is transmitted and that y(D) is received. Let 

the errors on the channel be e(D). 

Hence, y(D)=x(D)+e(D).

The receiver knows that a valid y(D) should leave no 

remainder if divided by g(D).

So, the receiver declares:

ACK if 𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓
𝒚 𝑫

𝒈 𝑫
= 𝟎

NACK if 𝑹𝒆𝒎𝒂𝒊𝒏𝒅𝒆𝒓
𝒚 𝑫

𝒈 𝑫
≠ 𝟎
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When does it fail?

Since we have shown that x(D) is divisible by g(D),

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑦 𝐷

𝑔 𝐷
= 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝑥 𝐷 +𝑒(𝐷)

𝑔(𝐷)
= 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝑒(𝐷)

𝑔(𝐷)

If no errors occur, i.e., e(D)=0, then this remainder is zero, and the 

receiver declares a successful transmission.

If e(D) is not zero, the receiver fails to detect the error only if 

Rem[e(D)/g(D)]=0.

This is the same as saying that e(D) is a valid code word, i.e.,

𝑒 𝐷 = 𝑔 𝐷 𝑧 𝐷

For some non-zero polynomial z(D)
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When does it fail?

Suppose that a single error occurs, i.e., 𝑒 𝐷 = 𝐷𝑖, for some integer i.

We have an un-detected error if and only if

𝑒 𝐷 = 𝑔 𝐷 𝑧 𝐷 for some z(D)

But since g(D) have at least two non-zero terms (1 and 𝐷𝐿), so must 

g(D)z(D) have.
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When does it fail?

Suppose that a single error occurs, i.e., 𝑒 𝐷 = 𝐷𝑖, for some integer i.

We have an un-detected error if and only if

𝑒 𝐷 = 𝑔 𝐷 𝑧 𝐷 for some z(D)

But since g(D) have at least two non-zero terms (1 and 𝐷𝐿), so must 

g(D)z(D) have.

Hence, g(D)z(D) cannot possibly equal 𝐷𝑖 and we can conclude

All single event errors are detectable
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Burst errors

We next consider bursts of errors e=[...000 110 10110 ...01101 000....]

We know that it will pass un-detected if and only if e(D) = g(D) z(D) for 

some z(D)

But,

(𝐷𝐿+ ⋯ + 1)(𝐷𝑗 + ⋯ + 𝐷𝑖) = 𝐷𝐿+𝑗 + ⋯ + 𝐷𝑖

 

Hence, g(D)z(D) will consist of a burst of at least length L.

P

g(D)                  z(D)

Tufvesson/Rusek, EITN21, PWC lecture 6, fall 2024 24



Burst errors

We next consider bursts of errors e=[...000 110 10110 ...01101 000....]

We know that it will pass un-detected if and only if e(D) = g(D) z(D) for 

some z(D)

But,

(𝐷𝐿+ ⋯ + 1)(𝐷𝑗 + ⋯ + 𝐷𝑖) = 𝐷𝐿+𝑗 + ⋯ + 𝐷𝑖

   

Hence, g(D)z(D) will consist of a burst of at least length L.

If P<L, e(D)=g(D)z(D) is not possible!

  All error bursts of length L and less are detectable

P

g(D)                  z(D)
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What about double errors?

What about e(D) of the type 𝐷𝑗 + 𝐷𝑖?

We already know that if j-i<L+1, then it is detectable. 

For j-i>L, more advanced theory must be used (theory of finite fields –

Galois theory)

When the smoke clears, the result is 

if g(D) is primitive, all double errors 

are detectable (if 𝑲 < 𝟐𝑳 − 𝟏)

if g(D) is primitive, all double errors 

are detectable (if 𝑲 < 𝟐𝑳 − 𝟏)
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Some known results

With a primitive g(D) times (1+D), that is g(D) =(1+D)gp(D)

• All single and double errors are detectable

• Burst-detecting capability of at least K

• Probability of detecting a completely random e(D): 2−𝐿

Standard g(D)s with L=16.

• 𝐷16 + 𝐷15 + 𝐷2 + 1 CRC-16

• 𝐷16 + 𝐷12 + 𝐷5 + 1 CRC-CCITT

Luckily, there is Matlab. Play around with the 

CRC-class (just type help crc in Matlab)
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Images, JPEG

• Representing color images requires specifying the 

intensities Red, Blue and Green (RGB) colors.

• Digital images require huge memory for storage.

• Sophisticated image compression schemes like JPEG are 

employed to reduce the size of images.

• These schemes employ the properties of images and the 

behavior or response of human eye to reduce 

redundancy.

• JPEG is not a suitable to represent graphs, lines as they

do not have the properties that the compression

algorithms are designed for.
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Other figure formats

• Vector formats (SVG, EPS)

– Specify where lines should be drawn

– Use this for graphs, lines (and figure text) in 

documents.

• Raster format (TIFF/PNG/GIF/BMP)

– Specify each pixel value (RGB)

– May use different levels of compression

Tufvesson/Rusek, EITN21, PWC lecture 6, fall 2024 31



Picture formats (original+5x magn.)

Eps vector format png Bad jpeg Good jpeg

Tufvesson/Rusek, EITN21, PWC lecture 6, fall 2024 32




	Slide 1: Project in Wireless Communication Lecture 6: Project overview and cyclic redundancy check (CRC) codes
	Slide 2: Project overview, part two: the audio channel
	Slide 3: Project overview, the audio channel
	Slide 4: Project overview, part three: the radio channel
	Slide 5: A problem to be encountered in Matlab
	Slide 6: Some tips and tricks
	Slide 7: Cyclic redundancy check, CRC
	Slide 8: CRC Example: Single parity check bit
	Slide 9: CRC Example: Single parity check bit
	Slide 10: CRC
	Slide 11: How to find c(D)?
	Slide 12: How to find c(D)?
	Slide 13: Long Division
	Slide 14: Long Division
	Slide 15: Long Division
	Slide 16: Long Division
	Slide 17: Long Division
	Slide 18: Long Division
	Slide 19: CRC
	Slide 20: Receiver operation
	Slide 21: When does it fail?
	Slide 22: When does it fail?
	Slide 23: When does it fail?
	Slide 24: Burst errors
	Slide 25: Burst errors
	Slide 26: What about double errors?
	Slide 27: Some known results
	Slide 28: Images, JPEG
	Slide 29
	Slide 30
	Slide 31: Other figure formats
	Slide 32: Picture formats (original+5x magn.)
	Slide 33

