

Project in Wireless Communication Lecture 6: Project overview and cyclic redundancy check (CRC) codes

FREDRIK TUFVESSON, FREDRIK RUSEK ELECTRICAL AND INFORMATION TECHNOLOGY

Project overview, part two: the audio channel

Part two is divided into two tasks

Task 1 – the basic link: Implement an OFDM system and send a data sequence from one computer to the other via the audio channel and decode.

Task 2 – the advanced link: Implement the packet based full duplex system on the audio channel with ARQ.

Deadline is Sunday Dec 1, 2024 for part two

Project overview, the audio channel

System should include:

- OFDM, minimum 64 carriers,
 - 75-80% active, 25-20% outer channels inactive
- Four sub-channels for continuous pilot symbols, and a preamble
- Packet based system
- ARQ, i.e., receiver should send ACK/NACK for each packet.
- Re-transmissions of the incorrectly received packets
- Cyclic redundancy check (CRC) code
- Minimum bit-rate during transmissions: 0.5 kbit/s
- Convolutional code is optional (you need to find out yourself if you need it or not), MIMO could be considered
- Minimum size of file: 20 kbits
- Max packet length: 1 kbits

Project overview, part three: the radio channel

Implement a basic OFDM based file transfer system over the radio channel using the ADALM Pluto SDR

Part three is also divided into two tasks

Task 1 – the basic link: Implement an OFDM transceiver and send a file between the Tx and Rx part of the same Pluto SDR.

Task 2 – the advanced link: Transfer the file from one Pluto to another Pluto over the radio channel.

 Deadline is Friday Jan 5, 2024 for part three, oral presentation of reports Jan 7-10

A problem to be encountered in Matlab

One particular problem is that in Matlab, one have to record sound for a pre-defined amount of time.

Since this is a "Matlab-problem" and not a "communication-theory-problem", you are allowed to make use of the built in clock-function in matlab. The internal clocks of the receiver and the transmitter are allowed to be synchronized with each other.

If you choose to use C/C++/Python, this problem is completely alleviated since one can then record sound "until something happens" – for example "until there is no sound to record". You can also start recording when "there is something to record

However, the overhead of using C/C++/Python is rather large if you are not experienced.

Some tips and tricks

- Plot the signals you are transmitting, do they look as you intended?
- Plot the received signal, can you see it visually?
- Make a scatter plot of the received constellation, does it make sense?
- Think about a suitable carrier frequency and bandwidth before starting to code
- Verify your code after each step
- Use external, cable connected, microphone and loud speaker, verify your hardware settings in the computer

Cyclic redundancy check, CRC

A CRC is used for *error detection*, not for error correction.

Example: Single parity check bit

Suppose one wants to transmit the 5 bits

[0 0 1 0 1]

If one receives the bits

[0 0 0 0 1]

This error will pass by un-detected.

CRC Example: Single parity check bit

Suppose one wants to transmit the 5 bits

 $[0\ 0\ 1\ 0\ 1]$

If one receives the bits

[0 0 0 0 1]

This error will pass by un-detected.

We can fix this by adding a single parity bit so that the total number of 1s is always even.

We then have

Total number of 1s = even

CRC Example: Single parity check bit

Suppose one wants to transmit the 5 bits

 $[0\ 0\ 1\ 0\ 1]$

If one receives the bits

[0 0 0 0 1]

This error will pass by un-detected.

We can fix this by adding a single parity bit so that the total number of 1s is always even.

Parity bit

We then have

[0 0 1 0 1 **0**]

If we receive

Total number of 1s = odd [0 0 0 0 1 **0**] -> not correct

we know that there has been 1 bit error on the channel, and we will ask for a re-transmission

CRC

The previous example was just meant as illustration, and in reality, much more advanced systems are used. **But, they are based upon the same principle!**

Suppose that we should send K bits, [$U_0...U_{K-1}$]. We denote these by the D-transform

$$\mathbf{u}(D) \stackrel{\text{def}}{=} u_{K-1}D^{K-1} + u_{K-2}D^{K-2} + \dots + u_0$$

Hence, $1 + D + D^6 = [1 \ 1 \ 0 \ 0 \ 0 \ 1]$ etc etc

The powers of the indeterminate *D* can be thought of as keeping track of which bit is which. The CRC is represented by another polynomial,

$$c(D) \stackrel{\text{def}}{=} c_{L-1}D^{L-1} + c_{L-2}D^{L-2} + \dots + c_0$$

The entire frame of data and CRC is then $x(D) = u(D)D^{L} + c(D)$, that is

$$x(D) \stackrel{\text{def}}{=} u_{K-1}D^{L+K-1} + u_0D^L + c_{L-1}D^{L-1} \dots + c_0$$

How to find c(D)?

The check bits c(D) depend of course on the information bits u(D).

Question: How to find the check bits c(D) given a particular set of information bits u(D) in a structured fashion?

How to find c(D)?

Define a generator polynomial g(D) of degree L

$$g(D) \stackrel{\text{def}}{=} D^L + g_{L-1}D^{L-1} + \dots + g_1D + 1$$

For a given generator polynomial, g(D), the mapping from the information bits, u(D), to the CRC, c(D), is given by

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus $(1+1) \mod 2 = 0$, and $(0-1) \mod 2 = 1$.
- Subtraction using modulo 2 arithmetic is the same as addition

Example:

$$D^3 + D^2 + 1$$
 $D^5 + D^3$

Find remainder of $D^5 + D^3$ divided with $D^3 + D^2 + D$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus $(1+1) \mod 2 = 0$, and $(0-1) \mod 2 = 1$.
- Subtraction using modulo 2 arithmetic is the same as addition

$$D^{2}$$

$$D^{3} + D^{2} + 1 D^{5} + D^{3}$$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.
- Subtraction using modulo 2 arithmetic is the same as addition

$$D^{2}$$

$$D^{3} + D^{2} + 1 D^{5} + D^{3}$$

$$D^{5} + D^{4} + D^{2}$$

$$D^{4} + D^{3} + D^{2}$$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus $(1+1) \mod 2 = 0$, and $(0-1) \mod 2 = 1$.
- Subtraction using modulo 2 arithmetic is the same as addition

$$D^{2} + D$$

$$D^{3} + D^{2} + 1 D^{5} + D^{3}$$

$$D^{5} + D^{4} + D^{2}$$

$$D^{4} + D^{3} + D^{2}$$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.
- Subtraction using modulo 2 arithmetic is the same as addition

$$D^{2} + D$$

$$D^{3} + D^{2} + 1 D^{5} + D^{3}$$

$$D^{5} + D^{4} + D^{2}$$

$$D^{4} + D^{3} + D^{2}$$

$$D^{4} + D^{3} + D$$

$$D^{2} + D = Remainder$$

$$c(D) = Remainder \left[\frac{u(D)D^L}{g(D)} \right]$$

- This is just an ordinary long division of one polynomial with another.
- All operations are modulo 2. Thus (1+1) mod 2 = 0, and (0-1) mod 2 = 1.
- Subtraction using modulo 2 arithmetic is the same as addition

Example:

quotient $D^{2} + D$ $D^{3} + D^{2} + 1 D^{5} + D^{3}$ $D^{5} + D^{4} + D^{2}$ $D^{4} + D^{3} + D^{2}$ $D^{4} + D^{3} + D^{2}$ $D^{2} + D = Remainder$ $D^{5} + D^{3} = (D^{2} + D)(D^{3} + D^{2} + 1) + (D^{2} + D)$

CRC

Let z(D) denote the quotient. We then have:

$$u(D)D^{L} = g(D)z(D) + c(D)$$

Subtract c(D) from both sides and use "+" = "-" in modulo 2 arithmetic

$$x(D) = u(D)D^{L} + c(D) = g(D)z(D)$$

Thus, all valid code words x(D) are divisible by the generator polynomial g(D)

Receiver operation

Assume x(D) is transmitted and that y(D) is received. Let the errors on the channel be e(D).

Hence,
$$y(D)=x(D)+e(D)$$
.

The receiver knows that a valid y(D) should leave no remainder if divided by g(D).

So, the receiver declares:

ACK if Remainder
$$\frac{y(D)}{g(D)} = 0$$

NACK if
$$Remainder \frac{y(D)}{g(D)} \neq 0$$

When does it fail?

Since we have shown that x(D) is divisible by g(D),

$$Remainder \frac{y(D)}{g(D)} = Remainder \left[\frac{x(D) + e(D)}{g(D)} \right] = Remainder \frac{e(D)}{g(D)}$$

If no errors occur, i.e., e(D)=0, then this remainder is zero, and the receiver declares a successful transmission.

If e(D) is not zero, the receiver fails to detect the error only if Rem[e(D)/g(D)]=0.

This is the same as saying that e(D) is a valid code word, i.e., e(D) = g(D)z(D)

For some non-zero polynomial z(D)

When does it fail?

Suppose that a single error occurs, i.e., $e(D) = D^i$, for some integer *i*.

We have an un-detected error if and only if

$$e(D) = g(D)z(D)$$
 for some $z(D)$

But since g(D) have at least two non-zero terms (1 and D^L), so must g(D)z(D) have.

When does it fail?

Suppose that a single error occurs, i.e., $e(D) = D^i$, for some integer *i*.

We have an un-detected error if and only if

$$e(D) = g(D)z(D)$$
 for some $z(D)$

But since g(D) have at least two non-zero terms (1 and D^L), so must g(D)z(D) have.

Hence, g(D)z(D) cannot possibly equal D^i and we can conclude

All single event errors are detectable

Burst errors

We next consider bursts of errors $e=[...000 \ \underline{110} \ 10110 \ ...01101]$ 000....]

We know that it will pass un-detected if and only if e(D) = g(D) z(D) for some z(D)

But,

$$(D^{L}+\cdots+1)(D^{j}+\cdots+D^{i})=D^{L+j}+\cdots+D^{i}$$

$$g(D)$$

$$z(D)$$

Hence, g(D)z(D) will consist of a burst of at least length L.

Burst errors

We next consider bursts of errors $e=[...000 \ \underline{110} \ 10110 \ ...01101]$ 000....]

We know that it will pass un-detected if and only if e(D) = g(D) z(D) for some z(D)

But,

$$(D^L + \dots + 1)(D^j + \dots + D^i) = D^{L+j} + \dots + D^i$$

$$g(D) \qquad z(D)$$

Hence, g(D)z(D) will consist of a burst of at least length L. If P < L, e(D) = g(D)z(D) is not possible!

All error bursts of length *L* and less are detectable

What about double errors?

What about e(D) of the type $D^{j} + D^{i}$?

We already know that if j-i < L+1, then it is detectable.

For *j-i>L*, more advanced theory must be used (theory of finite fields – Galois theory)

When the smoke clears, the result is

if g(D) is primitive, all double errors are detectable (if $K < 2^L - 1$)

Some known results

With a primitive g(D) times (1+D), that is $g(D) = (1+D)g_p(D)$

- All single and double errors are detectable
- Burst-detecting capability of at least K
- Probability of detecting a completely random e(D): 2^{-L} Standard g(D)s with L=16.

•
$$D^{16} + D^{15} + D^2 + 1$$
 CRC-16

•
$$D^{16} + D^{12} + D^5 + 1$$
 CRC-CCITT

Luckily, there is Matlab. Play around with the CRC-class (just type *help crc* in Matlab)

Images, JPEG

- Representing color images requires specifying the intensities Red, Blue and Green (RGB) colors.
- Digital images require huge memory for storage.
- Sophisticated image compression schemes like JPEG are employed to reduce the size of images.
- These schemes employ the properties of images and the behavior or response of human eye to reduce redundancy.
- JPEG is not a suitable to represent graphs, lines as they do not have the properties that the compression algorithms are designed for.

Other figure formats

- Vector formats (SVG, EPS)
 - Specify where lines should be drawn
 - Use this for graphs, lines (and figure text) in documents.
- Raster format (TIFF/PNG/GIF/BMP)
 - Specify each pixel value (RGB)
 - May use different levels of compression

Picture formats (original+5x magn.)



