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Outline

® The team

® The researches

DFE: filtering for CA/sign-bit processing

Learning the channel: channel estimation for LTE
The matrix: matrix decomposition/inversion
Recovering the signal: multi-mode MIMO detection
Multi-task platform: reconfigurable cell array

Going faster than Nygvist: chip measurement

® Conclusion
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Research Motivations & Objective

environment application
selectivity selectivity

/
» Multi-standard » High-speed
» Multi-mode » Low-power
» Multi-task » Low-cost
- /
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DFE: Digital Front-End
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» Selective-channelization for LTE-A carrier
aggregation (together with IMEC)

Isael Diaz
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Channelization for LTE-A Carrier Aggregation

® LTE-A Carrier Aggregation
® CA scenarios: intra-band continuous, intra/inter-band non-continuous
® CC bandwidth: 1.4MHz (6RB)~20MHz (100RB)

Band A Band A Band A Band B

¢ Software Defined Radio as Potential Solution (ADRES)

- : . : :
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Front End Modem

FULL SDR FILTERING: ADRES Filtering + ADRES Inner modem
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Filtering Methods

® Candidate filtering method: Long FIR Filter/CIC+FIR Filter/FFT

® Power analysis (on ADRES)
® Clock cycles as metric
® FFT is the best due to architectural optimization

109
N Decimation |
31051 ———----—-'E'Z.T;f_f'_;-_-_-__-__-_-_-__;_
o™ e e -
' ‘.'_,_I"
8104 -/ .."'Architecture Optimization il
6 comeo FFT
| ~e-r CIC Filter + FIR
.‘I Long FIR
103 | | | |
0 100 200 300 400 500

User Assigned Bandwidth (RByeg)

Lund University / Department of Electrical and Information Technology




Performance Analysis

¢ Channelization schemes
® Partial filtering: only the user assigned bandwidth is extracted
® Full filtering: the entire transmission bandwidth is extracted
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Continue DFE in DARE

Analog/RF signal Mixed-mode signal affsignal
domain domain i
( Analog ] N [ Analog-to-digital Robust baseband ]

front-end conversion front-end receiver algorithms

Local Local Local Local
control control control control

Global
control

» Imperfections with carrier aggregation

» Scalable DFE for both high-end LTE devices and
low-end M2M devices

» Together with Ericsson

Michal Stala |Isael Diaz
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Channel Estimation
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» Improved matching pursuit for LTE
channel estimation (results update
from LCDWS 2011)

Johan Lofgren
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Improved Matching-Pursuit for LTE CE

® MP with three modifications:

® Ll-norm energy calculation, SNR-depended stopping scheme, and
smartly increased system resolution

¢ Better performance than frequency-domain MMSE and original MP
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Hardware Implementation Results

¢ ST 65nm CMOS including FFT/IFFT & core estimator
® Better accuracy with compatible hardware & higher speed

This work [9] [22]

Technology [nm] 65 180 65 P
Area [mm?] 0.13/0.29() 1 0.1 : s
Norm. Area [mm?] | 0.13/0.29) 0.13 0.1 et
Frequency [MHz] 125 154 200 =
Init. [us] 7.62 336 N/A t+PacFromel |

Update [us] 0.62 3.62 N/A
Estimates in 1ms 10.3 1.6 8

(1) Without/With FFT/IFFT
[9] P. Maechler, et.al., “Matching pursuit: evaluation and implementation for LTE channel

estimation,” IEEE ISCAS, May 2010.
[22] M. Simko, et.al., “Implementation aspects of channel estimation for 3gpp LTE terminals,’

European Wireless Conference, April 2011
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Energy-Efficient Channel Pre-Processing
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» Link-adaptive QR-decomposition using
Householder transformations

Rakesh Gangarajaiah

» Energy efficient channel pre-
processor using partial update scheme

Chenxin Zang Hemant Prabhu

13 Lund University / Department of Electrical and Information Technology



Link-Adaptive QR-Decomposition

® Basic idea: dynamically adjust parameters energy-efficient mode according
to H and modulation scheme, with constraint: BER requirement is satisfied
¢ Parameters:
® Newton-Rhapson iteration number
® Word-length of the processor

e OCNNE o Off-line
: QR-Decomp. E E H || modulation NR-Ite. || wL
‘ Processor ; ' - —
E Word E . M
5 length E : BER Curve Power Curve
Parameter E Parameter
Select E Optimization
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Power Reduction Using Partial Channel Update

15

Full channel update (complete QRD)
Needed to track channel change
Expensive in terms of power

QRD-1 (TCAS1-11) | MIMOD-1 (ISSCC-09)
Gate Count 111K 114K
Throughput (SC/s) 12.5M 28.125M
Energy (nJ/SCJ/s) 12.76 5.37

Partial channel update (approximated QRD)
Only upper triangular R is updated as:

Dynamically switch between full and partial update according to time-

R; — szitH’l/

correlation; full update in low-correlated channel
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Performance Evaluation

¢ LTE downlink with 4X4 64-QAM MIMO under EVA-70 channel
® Performance-power tradeoff by adjusting patial update ratio
¢ Saving 60% power with 1dB performance loss
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MIMO Detection
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» Multi-mode MIMO signal
detection with soft-output

Liang Liu
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Multi-Mode Soft-Output MIMO Detection

¢ Soft-output MIMO detection

0::3 y=Hs+n Z::O—} I7

BN

®  Multi-mode MIMO detector

Reconfigurable
Multi-Mode
Soft-Output

Detector
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MIMO Tech. Antenna Modulate
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MIMO Techniques — Unified Algorithm

® Algorithms share most of the operations
¢ SM: FSD tree-search with bit-flipping

¢ SDMA: FSD tree-search with detection reordering

¢ SD: Real-valued MAP decoder using bit-flipping

_ MIMO Techniques
Operations
SM SDMA SD

A A H decomp. f f v
O =
o ® H permut. | |
” Node selection M M M
D e~
2o Interf. cancel V1 |
% @

Euclidean distance M M M
S = Sorter M |
=
Y List LLR calc. | M

Bit-flipping M
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Antenna Configurations — Scalable Architecture

® Example: SM detector

TSB: Activate different stages according to antenna configuration

LLCB/BFB: Close half of the LLR/BFB calculation units
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Results

Post-layout results with ST 65nm CMOS technology
Supports the most MIMO modes
Consumes the least hardware and energy

TVLSI" 07 TVLSI 11 IS5C 12 ISCAS’™ 10 This Work
MIMO Modes SM SM SM SM SM/SD/SDMA
Antenna Size 44 44 44 4x4 44
Modulation 64-QAM 64-QAM 64-QAM 64-QAM 64-QAM
Algorithm Soft-output | Soft-output SISO Soft-output Earl}f‘—prufled ‘FSD
K-best best-first MMSE-PIC K-best with bit-flip
Process Technology 0.13 pm 65 nm 90 nm 65 nm 65 nm
Max. Clock Rate 270 MHz 333 MHz 568 MHz 833 MHz 167 MHz
Throughput 8.57 Mb/s 83.3 Mb/s 757 Mb/s 2 Gh/s 1 Gb/s
Core Area 2.38 mm? N/A 2 1.5 mm? 0.57 mm? 0.25 mm?
Gate Count 280 kG*® 64 kG“ 410 kG?/160 kG* 298 kG“ 83.7 kG“
Hardware Effici
araware BHCEEY 1 3067 @ 0.77 @ 0.21 @ 0.15 @ 0.084 4
kG/(Mb/s)
, 94 mW 11.5 mW 189.1 mW 280 mW 593 mW @ 1.2V
Power Consumption )
@ 1.2V @ 1.0V @12V @ 1.3V (SM mode)
Normalized N/A 16.6 mW 136.6 mW 238.6 mW 59.3 mW
Power Consumption
N lized
ormatize N/A 199.2 p/bit 180.4 p/bit 119.3 pl/bit 59.3 pl/bit \

Energy Consumption
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Reconfigurable Cell Array (RCA)
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» Mapping channel estimation, QRD,
and MIMO detection in LTE-Aon a
reconfigurable platform

Chenxin ang

22 Lund University / Department of Electrical and Information Technology



Algorithms

® Operations push to vector-level

® Improve data parallelism and instruction parallelism

¢ Easily mapped to vector processor with high hardware utilization
® Algorithms

¢ Channel estimation: Robust MMSE with sliding window

® QRD: Sorted-QRD using modified Gram—-Schmidt processing

¢ MIMO detection: MMSE with node perturbation

Mathematical operations Ch. Ch. Pre- Signal

Est. proc. Det.
Vector-vector | | |
Scalar-vector M
Vector Opt. _
Matrix-vector |
Vector permutation M
SQRT/DIV v
Scalar Opt.

Node selection
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Platform

® Heterogeneous cell array with vector operation

® RISC elements (PEO, PE1): task scheduling, cell configuration, and
conditional & scalar operations.

® Multiple memory banks: to improve bandwidth and access flexibility
¢ Dataflow processor PE2 (DPE): 2D FUs for vector-based operations.
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Faster Than Nygvist Signaling

A A
N [ \ f

Rx IOTA matched inner | | I outer ccoded
filter [ FFT [ filtering _bdecoder decoder ™ bits

I demodulation reconstruction [ iterative decoding )
Ve A\
C

» Iterative decoder for multi-carrier faster
than Nyqgvist system (measurement result
update from LCDWS2011)

Deepak Dasalukunte

25 Lund University / Department of Electrical and Information Technology



Chip Measurement Results [@TTIIIIIL

B T
A
=
Tech. ST 65nm CMOS &
(@)
Die Area 0.8 mm?
Gate Count 250k
\
Total memory 14.68kB
IO & core supply 1.8v & 1.2v o """ g 6mW@1OOMH
o R N A B A A
Throughput 1Mbps@8 iter B ------- ------- S
7,,,,,,,1 ,,,,,, S L I o
Power 9.6mwW e oS ]
S ogh ]
Energy 6nJ/sym/iter S oS
3 2.84mW@?)50MI?—|Z
) SRS N8 NS N
1L 1.14mW@25MHz
0.42mW @ 12.5MHz
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Core supply in Volts
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FTN is a Practical Technique

® Lack of existing hardware implementations for FTN decoder

® To see how FTN decoder fits into exsting systems by referring a
reconfigurable FFT and a Turbo decoder in 65nm CMOS

Functionality | FTN iterative 128-2048 point 3GPP LTE

decoder FFT Turbo Decoder
ESSCIRC 2012 JSSC 2012 DATE 2010

Technology 65nm 65nm 65nm

Core Area 0.567 mm? 1.375 mm? 2.1 mm?

Gate count 250k 1100k -

Total 14.68kB 6.14kB 549% of area

Memory

Power 9.6mW 4.05mW 300mwW
(@ 1.2V, (@ 0.45V, (@ 1.1V,
100MHZz) 20MH2z) 300MHz)
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Conclusions

® Support multi-standard, multi-mode, and multi-task

® High-speed, good performance with energy & area-efficiency
® Co-optimize system schedule, algorithm, and hardware

® Link-adaptive signal processing

¢ Scalable ASICs & reconfigurable cell array

® LTE/LTE-A as driving applications

® Post-layout simulation & chip measurement
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