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Outline

• The team

• The researches

• DFE: filtering for CA/sign-bit processing

• Learning the channel: channel estimation for LTE

• The matrix: matrix decomposition/inversion

• Recovering the signal: multi-mode MIMO detection

• Multi-task platform: reconfigurable cell array

• Going faster than Nyqvist: chip measurement  

• Conclusion
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Research Motivations & Objective

environment

selectivity
application

selectivity

 Multi-standard

 Multi-mode

 Multi-task

 High-speed

 Low-power

 Low-cost

Our Focus: integrate the demands in an efficient hardware 
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DFE: Digital Front-End
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Isael Diaz

 Selective-channelization for LTE-A carrier 

aggregation (together with IMEC)
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Channelization for LTE-A Carrier Aggregation

• LTE-A Carrier Aggregation 

• CA scenarios: intra-band continuous, intra/inter-band non-continuous

• CC bandwidth: 1.4MHz (6RB)~20MHz (100RB)

• Software Defined Radio as Potential Solution (ADRES)
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Filtering Methods

• Candidate filtering method: Long FIR Filter/CIC+FIR Filter/FFT

• Power analysis (on ADRES)

• Clock cycles as metric

• FFT is the best due to architectural optimization
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Performance Analysis

• Channelization schemes

• Partial filtering: only the user assigned bandwidth is extracted 

• Full filtering: the entire transmission bandwidth is extracted

• Performance analysis

• EPA (2km/h), EVA 

(30km/h), ETU(130km/h)

• Marginal performance 

loss due to CE error

• Complexity saving is up 

to 70%
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Continue DFE in DARE

Michal Stala

 Imperfections with carrier aggregation

 Scalable DFE for both high-end LTE devices and 

low-end M2M devices

 Together with Ericsson

Isael Diaz
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Channel Estimation
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Johan Löfgren

 Improved matching pursuit for LTE 

channel estimation (results update 

from LCDWS 2011)
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Improved Matching-Pursuit for LTE CE

• MP with three modifications: 

• L1-norm energy calculation, SNR-depended stopping scheme, and 

smartly increased system resolution

• Better performance than frequency-domain MMSE and original MP
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This work [9] [22]

Technology [nm] 65 180 65

Area [mm2] 0.13/0.29(1) 1 0.1

Norm. Area [mm2] 0.13/0.29(1) 0.13 0.1

Frequency [MHz] 125 154 200

Init. [us] 7.62 336 N/A

Update [us] 0.62 3.62 N/A

Estimates in 1ms 10.3 1.6 8

12

Hardware Implementation Results

• ST 65nm CMOS including FFT/IFFT & core estimator

• Better accuracy with compatible hardware & higher speed 

(1) Without/With FFT/IFFT

[9] P. Maechler, et.al., “Matching pursuit: evaluation and implementation for LTE channel 

estimation,” IEEE ISCAS, May 2010.

[22] M. Simko, et.al., “Implementation aspects of channel estimation for 3gpp LTE terminals,” 

European Wireless Conference, April 2011
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Energy-Efficient Channel Pre-Processing
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Rakesh Gangarajaiah

 Link-adaptive QR-decomposition using 

Householder transformations

Chenxin Zhang Hemant Prabhu

 Energy efficient channel pre-

processor using partial update scheme
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Link-Adaptive QR-Decomposition

• Basic idea: dynamically adjust parameters energy-efficient mode according 

to H and modulation scheme, with constraint: BER requirement is satisfied

• Parameters:

• Newton-Rhapson iteration number

• Word-length of the processor

Parameter

Select

H

BER Curve

QR-Decomp.

Processor

NR

Iteration

Word

length

modulation NR-Ite. WL

Power Curve

Parameter

Optimization

On-line Off-line

14
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Power Reduction Using Partial Channel Update

• Full channel update (complete QRD)

• Needed to track channel change

• Expensive in terms of power

• Partial channel update (approximated QRD)

• Only upper triangular R is updated as:

• Dynamically switch between full and partial update according to time-

correlation; full update in low-correlated channel

QRD-1 (TCAS1-11) MIMOD-1 (ISSCC-09)

Gate Count 111K 114K

Throughput (SC/s) 12.5M 28.125M

Energy (nJ/SC/s) 12.76 5.37

15
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Performance Evaluation

• LTE downlink with 4×4 64-QAM MIMO under EVA-70 channel

• Performance-power tradeoff by adjusting patial update ratio

• Saving 60% power with 1dB performance loss

16
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MIMO Detection
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Liang Liu

 Multi-mode MIMO signal 

detection with soft-output

17



Lund University / Department of Electrical and Information Technology

SD

SDMA

SM

2×2

3×3

4×4

QPSK

16-QAM

64-QAM

Reconfigurable

Multi-Mode

Soft-Output

Detector

MIMO Tech. Antenna Modulate

Multi-Mode Soft-Output MIMO Detection

• Soft-output MIMO detection

• Multi-mode MIMO detector

y=Hs+n
R

S

18
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MIMO Techniques – Unified Algorithm
• Algorithms share most of the operations

• SM: FSD tree-search with bit-flipping

• SDMA: FSD tree-search with detection reordering

• SD: Real-valued MAP decoder using bit-flipping

Operations
MIMO Techniques

SM SDMA SD

P
re

P
ro

c
.

H decomp. R R R

H permut. R R

tre
e
 

s
e

a
rc

h

Node selection R R R

Interf. cancel R R

Euclidean distance R R R

L
L

R
 

c
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lc

.

Sorter R R

List LLR calc. R R

Bit-flipping R R
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Antenna Configurations – Scalable Architecture

4×4 Mode

• Example: SM detector

• TSB: Activate different stages according to antenna configuration

• LLCB/BFB: Close half of the LLR/BFB calculation units  

2×2 Mode
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Results
 Post-layout results with ST 65nm CMOS technology

 Supports the most MIMO modes

 Consumes the least hardware and energy

21
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Reconfigurable Cell Array (RCA)
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Chenxin Zhang

 Mapping channel estimation, QRD, 

and MIMO detection in LTE-A on a 

reconfigurable platform

22
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Algorithms

• Operations push to vector-level

• Improve data parallelism and instruction parallelism

• Easily mapped to vector processor with high hardware utilization

• Algorithms

• Channel estimation: Robust MMSE with sliding window

• QRD: Sorted-QRD using modified Gram–Schmidt processing

• MIMO detection: MMSE with node perturbation

Mathematical operations
Ch. 

Est.

Ch. Pre-

proc.

Signal

Det.

Vector Opt.

Vector-vector R R R

Scalar-vector R

Matrix-vector R

Vector permutation R

Scalar Opt.
SQRT/DIV R

Node selection R

23
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Platform

• Heterogeneous cell array with vector operation

• RISC elements (PE0, PE1): task scheduling, cell configuration, and 

conditional & scalar operations.

• Multiple memory banks: to improve bandwidth and access flexibility

• Dataflow processor PE2 (DPE): 2D FUs for vector-based operations.

24
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Faster Than Nyqvist Signaling

Deepak Dasalukunte

 Iterative decoder for multi-carrier faster 

than Nyqvist system (measurement result 

update from LCDWS2011)
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Chip Measurement Results

1mm

0
.8

m
m

Tech. ST 65nm CMOS

Die Area 0.8 mm2

Gate Count 250k

Total memory 14.68kB

IO & core supply 1.8v & 1.2v

Throughput 1Mbps@8 iter

Power 9.6mW

Energy 6nJ/sym/iter
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FTN is a Practical Technique 

• Lack of existing hardware implementations for FTN decoder

• To see how FTN decoder fits into exsting systems by referring a 

reconfigurable FFT and a Turbo decoder in 65nm CMOS

Functionality FTN iterative 

decoder

128-2048 point

FFT

3GPP LTE 

Turbo Decoder

ESSCIRC 2012 JSSC 2012 DATE 2010

Technology 65nm 65nm 65nm

Core Area 0.567 mm2 1.375 mm2 2.1 mm2

Gate count 250k 1100k -

Total 

Memory

14.68kB 6.14kB 54% of area

Power 9.6mW

(@ 1.2V, 

100MHz)

4.05mW

(@ 0.45V, 

20MHz)

300mW 

(@ 1.1V, 

300MHz)
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Conclusions

• Support multi-standard, multi-mode, and multi-task

• High-speed, good performance with energy & area-efficiency

• Co-optimize system schedule, algorithm, and hardware

• Link-adaptive signal processing 

• Scalable ASICs & reconfigurable cell array

• LTE/LTE-A as driving applications

• Post-layout simulation & chip measurement
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