NEW NON-VOLATILE MEMORY SOLUTIONS: HOW THEY MAY (NOT) SERVE FUTURE SYSTEMS

LIESBET VAN DER PERRE

LUND CIRCUIT DESIGN WORKSHOP, OCT 3RD 2012

MORE AND MORE MEMORY IS REQUIRED

On-chip memories today:

- > 50% total die-area and are responsible for more than
- > 40% total power consumption.
- Cache memory: 30% on-chip area in state-of-the-art microprocessors.

EMBEDDED MEMORY MARKET SPACE DIVERSE APPLICATIONS

FPGAs

Mobile Application

Mobile Communication

Mobile Graphics

Micro-controllers

NEW NON-VOLATILE MEMORY SOLUTIONS: HOW THEY MAY (NOT) SERVE FUTURE SOCS

- I. Why move our cheese?
- 2. Memory technology: emerging non-volatile solutions
- 3. System challenges/solutions:
 - Write latency: scheduling to conceal the penalty
 - Endurance: dedicated error coding could help

Warnings:

- Work (getting) in progress
- Wireless propagation background

SRAM: POPULAR SOLUTION TODAY

- 6T memory cell
- Fast
- Relatively low power

But: (how) will they scale?

- Increasing leakage
- Increasing variability

EMBEDDED NVM IN RELEVANT PROMISE GREAT GAINS FOR SOC AREA (AND POWER?)

CHALLENGE: OPERATE NEW MEMORIES WITHOUT PERFORMANCE PENALTY

Assumption Change: "Volatile embedded memory becomes non-volatile"

NEW NON-VOLATILE MEMORY SOLUTIONS: HOW THEY MAY (NOT) SERVE FUTURE SOCS

- I. Why move our cheese?
- 2. Memory technology: emerging non-volatile solutions
- 3. System challenges/solutions:
 - Write latency: scheduling to conceal the penalty
 - Endurance: dedicated error coding could help

MEMORY @ IMEC:TECHNOLOGY & SYSTEMS WILL MEET IN THE MIDDLE?

What?	Memory cell/array (Emerging Memory)	System solutions (embedded/mobile applications)
Which value?	Memory stack and statistics	System solutions for endurance and latency
What does it take?	Material research Cell PDK	SoC architectures, ECC solution

Betting on two horses (RRAM & STT-MRAM) They could both win races

EMERGING NON-VOLATILE MEMORIES

Memory	Flash	MRAM	PCRAM	FeRAM	RRAM	CBRAM
Write current	5μA	0.87mA	I.2mA	N/A	25 <i>µ</i> A	Ι0 <i>μ</i> Α
Write time	200ms	~ 10ns	~ 300ns	IOns	5ns	50ns
Access time	I 5ns	8ns	l 2ns	8ns	8.5ns	50ns
Endurance	~I0 ⁵	I0 ¹⁵	10 ⁶	N/A	>1010	I 0 ⁶
Cell area	Small	Medium	Medium	Medium	Medium	Medium
R Ratio	> 0	2	> 10	N/A	> 10	>100

Phase Change RAM (PCRAM), Ferro-Electric RAM (FeRAM) Conductive Bridging RAM (CBRAM)

imec © IM

SPIN-TRANSFER-TORQUE (STT-)MRAM CELL

RRAM: CMOS COMPATIBLE & DENSE

- Memristor used as storage element
- Retains the last resistance that it had when the current stopped
- Based on the switching mechanism
- Low cost
- High R ratio

Technology News

Taiwan embeds ReRAM in 28-nm logic process

September 26, 2012 // Peter Clarke

The ability to embed resistive RAM (ReRAM) into mainstream logic process technology could have major implications for the design of system-onchip, and foundry chip maker Taiwan Semiconductor Manufacturing Co. is keeping tabs on the emerging capability.

One of the more intriguing papers listed in the advance program for the 2012 International Electron Devices Meeting in December is authored by a research team from National Tsing-Hua University (Hsinchu, Taiwan) that is also affiliated with TSMC.

The abstract to the paper, titled "High-K metal gate contact RRAM (CRRAM) in pure 28-nm CMOS logic

process," states that a contact RRAM (CRRAM) cell has been realized in a HKMG 28-nm CMOS logic process without the use of any additional masking or process steps. This was done using a 35-nm by 35-nm contact hole.

'The amount of memory included on system chips is growing and becoming increasingly responsible for much of the power consumption. The facility to hold data in dense non-volatile memory on a SoC--rather than in power consuming SRAM for even a few processor cycles--could drive power savings in leading- edge manufacturing.'

MANY MEMORIES IN EACH TARGET DOMAIN WITH DIFFERENT SPECIFICATIONS

Market	Memories	Technology Flavor used	<u>Core</u> Freq Range
FPGA	BRAMs	HPM or HPL	200MHz-500MHz
Mobile Communication	LI, L2 Instruction LI, L2 Data	HPM	400MHz
Mobile Application	LI, L2 Instruction LI, L2 Data	HPM	1.2-1.5GHz
Mobile Graphics	LI, L2 Instruction LI, L2 Data	HPM	1.2-1.5GHz
Server/Desktop	LI, L2, L3 Instruction LI, L2, L3 Data	HP	1.5-3.6GHz
Micro-controllers	LI, L2 Instruction LI, L2 Data	HPL/LP	<100MHz

VIEW OF REQUIREMENT OF DIFFERENT MEMORIES FROM DIFFERENT MARKET SEGMENTS

Memory	Area %	Speed (MHz)	Power % (incl Leak)	R freq	W freq
FPGA BRAM	>50%?	200-400	??	=	=
Mobile Comm. D, I Fo	>25%, ocysoof our	200-600 research: One	35%, 15% of the most of	demanding	↑ , ↓
Mobile Appln D,I	>20%, >20%	400-1200	30%, 15%	ተ , ተ	↑ , =
Graphics D+I	>40%	400-600	30%, 20%	个 , 个	个 , =
Server D+I	±50%	1000-3200	15%, 15%	个 , 个	↑ , =
MicroController D/I	>15%, >15%	50-100	20%	=, 🛧	=,♥

NEW NON-VOLATILE MEMORY SOLUTIONS: HOW THEY MAY (NOT) SERVE FUTURE SOCS

- I. Why move our cheese?
- 2. Memory technology: emerging non-volatile solutions
- 3. System challenges/solutions:
 - Write latency: scheduling to conceal the penalty
 - Endurance: dedicated error coding could help

CHALLENGE: SYSTEM PERFORMANCE MAY GO DOWN (A LOT!)

Assumption Change: "Volatile embedded memory becomes non-volatile"

RERAM VS SRAM: ENERGY GAINS COULD BE SUBSTANTIAL

Read Energy Consumption	64 Kbit SRAM		64 Kbit ReRAM		
	32 bit word read access	512 bit wide word read access	32 bit word read access	512 bit wide word read access	
Read energy per access	4.39 pJ	32.41 pJ	0.74 pJ	2.20 pJ	
Read energy per accessed bit	0.13 pJ	0.063 pJ	0.023 pJ	0.004 pJ	

PRELIMINARY CONCLUSIONS?

- Be aware potential performance degradation!
- Adapt memory architecture and scheduling for area and energy purposes
- The case considered: most challenging, many easier/ more gains

NEW NON-VOLATILE MEMORY SOLUTIONS: HOW THEY MAY (NOT) SERVE FUTURE SOCS

- I. Why move our cheese?
- 2. Memory technology: emerging non-volatile solutions
- 3. System challenges/solutions:
 - Write latency: scheduling to conceal the penalty
 - Endurance: dedicated error coding could help

ECC SHOULD IMPROVE THE ENDURANCE OF RRAM MEMORIES

* Redundancy cells and encoding/decoding cost/power as overhead

ECC FOR RRAM: CRUCIAL FOR EMBEDDED AND STAND-ALONE

ADVANCED DEVICE DRIVEN ECC FOR RRAM: MANY IDEAS FOR RESEARCH

Exploiting Device Specific Characteristics ECC with quality of service ECC with RW control algorithms ECC with device/circuit control ECC with awareness of device status ECC with soft decoding ECC optimized for RRAM properties Exploiting More **Basic fixed ECC Read/Write History**

imec

 SRAM scaling increasingly problematic

 New non volatile memories: attractive for (mobile) SoCs

 System & technology: gap to bridge

And: non-volatile feature could be exploited!

Never give your old cheese awayin anticipation of finding new cheese

imec

THANK YOU

?

Cimec