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How Viktor is keeping me on my toes!

2013: Innovation is in the Mind (Mind of Innovation Conference)

2012: The Wireless Revolution Continues — From Mobiles to Swarms (Hon.
Doctorate)

2011: The Swarm at the Edge of the Cloud — A New Face of Wireless
2009: Exploring the Boundaries of Ultra-Low Power Design - Microscopic Wireless

2007: Design without Borders (A Tribute to Richard Newton)

2005: Traveling the Wild Frontiers of Ultra Low-Voltage Design

2004: Design in the Late-Silicon Age BeE -
2001: Picoradio — LP WSN NEWS euro
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A Pertinent 215 Century Question ...

“How to perform high-fidelity efficient computing on
platforms that feature huge numbers of lousy components
(aka nano-devices)?”

Neuro-inspired scalable

computational paradigms based
on statistical inference, massive
redundancy, and low resolution




Not a novel idea. Many have tried and failed ...




Recurring Waves of Neuro-inspired Computing

— McCullough-Pitts, Hebbian learning
— Ended with Marvin Minsky’s paper (1969)

— Re-emergence of ANNs — Hopfield networks
— Spurred by Carver Mead (neuromorphic)




A Need for Novel Computation Models
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A Need for Novel Computation Models
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CNT microprocessor
[Courtesy: Mitra, Wong, ISSCC13]

Others: TFETs, Graphene,
Spin, DNA, organic, True
3D ...
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16/32 Gbit RRAM
[ISSCC 2014]



A Need for Novel Computation Models

Interactive analysis of
“abundant data” using machine
learning kernels

Requiring 1000’s of servers
consuming MWs of power today

Need memory-centric
architectures




A Need for Novel Computation Models
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Alternative Computational Paradigms

Statistical Computational
Platforms

Architectures/ Architectures/ Statistical

Inherently
efficient

Algorithms Algorithms
Inefficient _ . _ . . .
mapping Logic/Circuits Logic/Circuits

Statistical Devices Devices Statistical

Functional non-determinism present in most applications related to

human-cyber interfaces
(feature extraction, classification, synthesis, recognition, decision making,
learning)




Features of (Bio) Neural Computation

(>10'6 FLOPS with ~20 W)

» Neural response is highly variable (o/p=1) [Faisall

» Auditory system: can tell difference of time arrival within 10 us with
cells having time constant of 1ms [sarpeshkar]

= QOlfactory system: can discriminate 104-10° odors with slight
difference of chemical structure with olfactory receptors having
broad reception range [Buck]




Opportunity of Neuro-Inspired Computing

Massively parallel, high density, major
redundancy (hyper-dimensional)

Low resolution (SNR) processing

Efficiency through sparsity

Robustness through exploitation of randomness AN SVAE N
and variability Bzl |

: . : A=V = =
Adapting to variations through learning N NI = E
Overcomplete representation

— E.g. Artificial Olfaction, Vision, Classification, Detection, Decision making
 While mitigating the properties of
(CNT, Graphene, MEMS, RRAM, Spin, PC, ...)
— Large numbers of devices, possibly in multiple layers (3D)

— Intertwined memory and computation
— Huge variability and fault-density
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Neuro-inspired: What its is not!

reconstructing the brain bottom-up
Mostly intended to be a simulation and modeling tool

Example: SpiNNaker
(Manchester)

1 million ARM9
processors, 100 kW,
1 billion neurons

Others: Blue Brain (EPFL), IBM Almaden, Neurogrid (Stanford)

Note: The human brain houses 100 billion neurons and 1 quadrillion synapses!




How to Gain Insights?

" Study what the brain does, and how well it
does it )

" Study the brain’s anatomical structure and
neural response properties (

)

— Improved imaging/BMI techniques to provide
insights

" Formulate theories and test against neural
data and performance (

)

— Collaboration between computational
neuroscience and engineering

[Courtesy: B. Olshausen, UCB]




The Sensory Pathway

Sensors Convergence Overcompleteness Associative Memory
Redundancy SNR Enhancement, Sparse Representation Pattern Storage/Retrieval
Spike Timing Encoding
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Sensors Convergence Overcompleteness Associative Memory

\IE] Retina Ganglion Cells/LGN Primary Visual Cortex (V1) Higher-level Cortex

Olfactory Olfactory Olfactory Bulb (OB) Primary Olfactory Cortex Higher-level Cortex
Epithelium (OE)




Retina
130 Million photoreceptors

Optical nerve:
1 Million fibers
10-100 Mb/sec

Visual cortex of
Macaque monkey






Low Precision Representations

POWER COSTS
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Digital is supreme when high

precision is needed, while analog

(voltage, time) is most efficient at Use of slow (digital) feedback moves

low SNR analog curves further to the right




Example: Concentration-Invariant Encoding

Interface Logarithmic Integrate-
Circuit Transform and-Fire

Interface Logarithmic Integrate-
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Example: Analyzing Sensor Signals with Reduced
Precision

Classification System:

Sensor
3 Feature

_ Data-driven 3 Classifier
data Extraction

Classification output

E.g. SVM training to INL: error-aware model
(EEG-based seizure detector)

E.g. ADC Integral Non-Linearity (INL)

|

Error-aware
Error-aware Model

Model

Digital code
(n-bit ADC)

True Positive (%)
True Negative (%)

0 100 200 300 400 0 100 200 _ 300 400
INL step (LSB) INL step (LSB)

[Courtesy: N. Verma, Princeton]




Hyper-dimensional Representations

e Extremely robust against most failure mechanisms and noise
e Purely statistical, thrives on randomness
e Supports full algebra

V1 (Layer 1 of visual cortex)
is HIGHLY overcomplete

300 400 500 600
Distance to the cell

Distance histogram for 1 million points in N-

dimensional space (N=1000)
[Barlow 1981]




HD Classifier: Sparse Distributed Memory™
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What is Cool about This?

Orthogonal transformation of
data into hyper-dimensional
space

3D integration enables scalability
Extremely low energy operation
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coincidence
delay detectors

cells

CNT density Delay (ps)
(CNT/pm)

(BT

Delay cell

Layer 1 (CNFET)

3D CNFETINV

Standard

deviation (us) Std/(Mean-Min)

[In collaboration with P. Wong and S. Mitra, Stanford]




What is Cool about This?

WORD-IN REGISTER
1,000 bits

J

Does NOT scale with current MOS memory
: technologies
Good match to RRAM/STTRAM

Only writes during training
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Dimension versus variability and leakage

WORD-OUT REGISTER
1,000 bits

Probability of wrong
decision = 2.3%!

undetermined (VDD = 0.4V, 30 active rows
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An exciting time ...

“Brains work with patterns of neural activity that are not readily
associated with numbers. The brain’s reliance on high-
dimensional distributed representations invites us to study high-
dimensional computing, all the more so now that
nanotechnology is poised to give us circuits that can scale up to
brain-size. To benefit from the technology, we need a theory of
computing that matches the technology ...”




Higher-Order Bits

— and as such the novel model of computation

Prime Target: Addressing the data
abundance in both the cloud and the
swarm!

Requires collaborations between
neuroscientists and and architect,
circuit and device engineers

Musculoskeletal mechanics
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