Low Power Design - Jointly towards 28FD-SOI

JOACHIM RODRIGUES, LUND UNIVERSITY

Overview

All PhD projects will be presented at the poster session tomorrow

- 65 nm
 - Custom Full-adder for 300 mV- Cristoph Müller
 - Energy efficient decoders- Reza Meraji
 - ULV DC-DC Converter Babak Mohamadi
 - Digital baseband for a wake-up receiver- Nafiseh Mazloum
 - Master Thesis projects
- 28 FD-SOI
 - 16 kB low power memory- Babak Mohamadi
 - Synthesizable latch based memory- Oskar Andersson

300mV Full-adder with fast Carry propagation

CHRISTOPH MÜLLER

Custom Full Adder Cell for Sub-V_t

Goal: FA for Ripple Carry Adder at 300 mV

- Simplest Adder design, no carry propagation circuitry leaking
- Throughput limited by carry propagation
- ➔ Optimized for a fast Ci to Co path

Survey over 36 Architectures

- Optimization, characterization and seamless PDK integration of winning design
- 23 T, Mixed Pass-Transistor/CMOS implementation, dual-V_t balancing

Test Designs

Testbed

- Three 24x24 ripple carry array multipliers, realized by
 - custom FAs
 - PDK FAs (different constraints)
- Separate power domains for measurement
- BIST to reduce pad count

Expected Results

- Simulation results in comparison to FA from PDK:
 - Lower dynamic power
 - Compareable leakage
 - Faster carry propagation

Carry

propagation

delay

Reduced

Energy Efficient Decoders for an Ultra Low Power Radio

REZA MERAJI

Graduation is planned for October 17th

An Ultra Low Power Receiver Chain

Project Goal: A complete low power receiver chain from antenna to decoder

- 1mW active, 1uW standby, 1mm² in 65nm
- 125 kbit/s or above for coded transmission

Hardware Implementation Approaches

Goal:

Fabricated ICs

Analog

- Analog Decoder has superior energy efficiency at higher throughputs, 42 % more efficient @ 2 Mb/s. min V_{DD} = 0.8 V, 21 uW @ 2 Mb/s Similar Area : 0.1mm²
- Digital decoder shows better energy efficiency at low V_{DD} / throughputs 33 % better @ 125 kb/s min V_{DD} = 0.32 V, 2 uW @ 125 kb/s

Single Clock High efficiency ULV DC-DC Converter with Automatic Power Controller

BABAK MOHAMMADI

High efficiency Charge-Pump

Goal

Our idea

- Charge-Pump operational in Ultra low voltages
- Low area cost, fast, high gain
- Low Power

Concept

- Improving switching quality by control logic
- Body biasing dynamically adjusted for increased efficiency
- Employing a voltage sensor to shutdown the switching activity

Conventional

Results

A 1µW wake-up receiver digital base-band with large address-space scalability

NAFISEH S. MAZLOUM

A Sub-V_t digital base-band

Goal:

An ultra-low power digital base-band for a certain

wake-up beacon structure.

Measurements:

 1μ W operating with 1MHz at V_{DD} = 0.37V

 $V_{DDmin} = 0.27V \text{ (at 5kHz)}$

The properties of the architecture enable scalability for massive networks with large address-spaces.

Nafiseh will give a more detailed presentation after my talk

Master Thesis

Sub-V_t Variation Aware Clock Network

Yuqi Liu, Babak Mohammadi, Oskar Andersson

- Reduced relability due to increased PVT variations, thus larger variations in skew and slew rate
- Quality of clock network improved by full-custom sub-V_t clock buffers

Expected Results

- 6x improvement in skew
- Lower area cost
- Less dynamic energy in clock tree

Master Thesis

Sub-V_t Variation Aware Clock Network

Standard-cell clock buffers

Custom Clock buffers

Clock buffers in separate power domains

Status: Measuring queue

Low Energy Data Compression forBrain ImplantMaster Thesis

- Compression ratio
 Up to 125X @ 100 spikes/s
- Architectural Optimizations
 Area optimized
- Energy savings
 30X from sub-V_t operation

Longyang Lin is a Phd student in Massimo Alioto group in Singapore now

Status: Measuring queue

Memories

BABAK MOHAMMADI

OSKAR ANDERSSON

PASCAL MEINERZHAGEN (EPFL, NOW AT INTEL LABS)

ANDREAS BURG (EPFL)

LORENZO CIAMPOLINI, ST CROLLES, FRANCE JOSEPH NGUYEN, ST CROLLES, FRANCE

FNSNF

OUR ULV memories

UNIVERSITET

- Area normalized to 65nm standard cell

Low Power Memory in 28 nm FDSOI

BABAK MOHAMMADI, EIT

LORENZO CIAMPOLINI AND JOSEPH NGUYEN, ST CROLLES, FRANCE

Lund/ST Collaboration Framework

 STMicroelectronics grants fabrication and supports the design on the newly developed FD28SOI technology

- Advantages of FDSOI technology already demonstrated:
- +30% speed at same power
 → High Speed applications
- -30% consumption at same speed
 → Low Power applications
- FDSOI process is simple & design porting from Bulk is fast
- 28nm FDSOI SoC Level Product data available
- Development done by Babak Mohammadi at Lund University

Lund/ST Collaboration Framework

- 2 months internship in STMicroelectronics Crolles (France), the fab where the FD28SOI process has been developed
 - Device architecture gate-first HKMG
 - Tsi 7nm, thin BOX 25nm
 - BOX opened with NOSOI mask for co-integration with Bulk devices and well ties
 - Thin <u>Tsi</u> → excellent electrostatic control
 - Undoped channel → low variability
 - Thin BOX → efficient and extended body biasing
 → well type used to define Vt
 - 15% less process steps in 28nm FDSOI vs LP
- Possible future joint developments currently being discussed

urce Si film Dr Buried OXide (BOX)

Memory specifications and Features

- 16 kB Memory Macro operating at 20 MHz at 300 mV with a single power supply
- Custom Ultra Low-Leakage bit-cell (PIPR) with modified Bit-Line write
- Low-power Boost Unit based on custom charge-pump (PIPR) dramatically improves write & read operations
- Novel Hybrid Decoding method (PIPR) allows to fully exploit the Boost Unit
- New read operation mechanism (PIPR) allows ULV operation
- Internal scan-chain and BIST will be used to test the Macro on silicon

PIPR= Planned IPR

Custom ULL Bit-cell

- Single-well architecture (stronger PMOS available)
- DRC-clean design using **no pushed DRC** rules;
- Negligible area overhead compared to industrial 8T bitcell (ST), area might improve with increased fab support.
- Bit-cell Spice characterization ongoing at ST
- Highly optimized for low leakage, lower leakage compared to existing 8T bit-cell
- Faster than existing 8T bit-cell
- Getting Closer to industrial design environment

Single P-WELL Macros

• Dynamic bias bitcell centering with single-well architecture

Source for images: FDSOI Process/Design full solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs , R.Ranica (STMicroelectronics, Crolles, France) et al, VLSI 2013

Current Status

• Design sent for fabrication, wafers expected beg 2015

Layout view of the chip sent for fabrication Total Area 730x1100 μm^2 = 0.803 mm^2

Synthesizable latched based memory in 28nm FDSOI

OSKAR ANDERSSON

SCM in 28FDSOI with Full-Custom 4-Bit Latches

Goal:

- Provide an alternative to SRAM for medium throughput system with energy awareness.
- Comparison with standard cell:
 - Decreased area
 - Reduced leakage
- Comparison with SRAM:
 - Reduced energy dissipation
 - Area penalty (?) & Delay

Status: Fabrication confirmed for October run

SCM in 28FDSOI with Full-Custom 4-Bit Latches

SCM in 28FDSOI with Full-Custom 4-Bit Latches

[1] Renesas: Tanaka et al., VLSI Symp., 2014

A 1µW wake-up receiver digital base-band with large address-space scalability

NAFISEH S. MAZLOUM

Questions?

