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The research
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Energy-efficiency computing

2134 x 15 =

2136 x 15 =

32010

? 32010+(2136-2134)x15 = 32040

How do we compute?

Observations? 

1. Calculations are complicated…

2. Correlations can make the job easier
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Correlations in wireless communication

Channel

estimation

Channel matrix 

process (QRD, inv.)

Data 

detection
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Low-complexity channel estimation: 

explore time-domain correlations

• Channel do not change so much when the terminal is not 

moving (too fast)

Input to FFT

Difference

0.25

0.2

0.025

0.02
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Low-complexity channel estimation

• Fewer bits are used in the FFT compared to the original 

DFT based channel estimator

Difference
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Low-complexity channel estimation

• Fewer bits are used in the FFT compared to the original 

DFT based channel estimator

Difference

6 bits less 

(66% reduction)
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Low-complexity QRD:

explore frequency-domain correlations
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• Aiming for very low-complexity linear QR interpolation

• Adaptively adjust interpolation distance

– depending on channel, noise, and QoS requirement
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Low-complexity QRD:

explore frequency-domain correlations
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Low-complexity QRD:

explore frequency-domain correlations

• Aiming for very low-complexity linear QR interpolation

• Adaptively adjust interpolation distance

– depending on channel, noise, and QoS requirement
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Low-complexity QRD
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Up to 80% 

complexity reduction



Low-complexity QRD
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Scalar processing Vector processing

Reconfigurable cell array

• Tile-0: vector processors

• Tile-1: vector memory

• Tile-2: scalar memory

• Tile-3: scalar processors
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Vector processing cell
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Area & energy efficiency

Layout with 65nm CMOS

 Core area: 8.88mm2

 Throughput: 368Mb/s

 Power: 550mW@1.2V and 500MHz

 CE, QRD, Detection  
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With data memory included.
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Massive (multi-user) MIMO

TDD operation

Base
station

Down-link:

Base
station

Up-link:

Massive MIMO implies that we let the number of base station
antennas (M) grow very large … in the hundreds!

Channel reciprocity assumed



We experience ”new” channel propeties

• Physically large arrays with many antenna elements

– have large Rayleigh distances, enabling the focus of 

energy not only in direction but also in ”depth”

– may experience power variations/large scale fading 

across the array

– make channels to different users become orthogonal 

as the number of antenna elements grows (under 

favourable propagation)

– even with simple precoding, channel variations 

average out
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Why do we care about massive MIMO?

Several orders of magnitude
more transmitted-energy efficient!

Much higher
spectral efficiency!

Massive MIMO with 100 BS antennas

[Plot from  Larsson, E. ; Edfors, O. ; Tufvesson, F. ; Marzetta, T., “Massive MIMO for next generation wireless systems”, 
IEEE Communications Magazine, Vol. 52 , Issue 2, 2014]



Practical challenges and research topics

• “Channel” reciprocity and its calibration

• Fast and power-efficient baseband processing

– Pre-coder

– Detector

• Low-cost front-end and front-end impairments

– PAPR 

– Phase noise 

– Quantization

• Highly-parallel and reconfigurable computing

• …
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Linear pre-coding

Base

station

Element k of x intended
for the kth terminal:

Terminals receive one
element each of

Maximum-ratio transmission (MRT)
Hermitian
transpose
of channel

Zero-forcing (ZF)
Pseudo-
inverse
of channel



Encoding

MIMO

Precoding
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Modulation

Encoding OFDM

Modulation
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”Low-complexity” linear pre-coding

• Linear pre-coding is not low-complexity anymore…

– 𝐻𝑍𝐹~𝐻
𝐻(𝐻𝐻𝐻)−1

– O(104) for a 100 base station antennas and 10 users 

• Processing latency becomes critical issue
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Low-compleixty linear pre-coding

• Neumann series based ZF pre-coding

– 𝐻𝐻𝐻 is diagonally dominante

– NS-approximation:

– Complexity optimizaiton

» Balance between interation (L) and pre-condition matrix (X) 
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Low-compleixty linear pre-coding

• Synthesis using 65nm CMOS

• Support 2-16 users

• 0.5M Inversions/sec

• 265 cycle latency~2.65 μs @ 
100MHz clock

27



Reciprocity calibration

• Channel reciprocity is the main assumption to realize

efficient TDD Massive MIMO

– downlink beamforming is performed based on uplink pilots

– ”channel” consists of propagation and tranceiver response
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Reciprocity calibration

• Calibrate by feeding back?

Base
station

𝑔1,1
𝑈/𝐷
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Reciprocity calibration

• Calibrate by feeding back?

• Calibrate by referering to the same base-station antenna

– What is the acceptable calibration quality in practice?

– How often should we do it?

Base
station

𝑏𝑛,𝑘

𝑏𝑚→𝑛
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Conclusions

• Digitally assisted radio design

• Adaptive computing for energy-efficient processing

• Reconfigurable circuits for flexibility

• Algorithm-architecture co-design for implementation efficiency

• MIMO goes to Massive

• From theory to practice
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