5G to 6G basestation beamforming trends

Magnus Nilsson Ericsson Sr Expert Transceiver technology

- Introduction
- What is 6G?
- Beamforming benefits and evolution
- High frequency technology limitations
- 100Gbps demo at 100GHz
- Full duplex
- Summary

Mobile Communication Trend

5G introduced beamforming and mmW

SDM

- mmW giving ~10x BW vs. sub-6GHz=>
 - extreme throughput in ~LOS,
 - beamforming to extend coverage
- Beamforming and MU-MIMO at sub-6GHz
 - "cheating" Shannon
 - more capacity without densification

$$C = B \times \sum_{\text{layers}} \log_2 \left(1 + \frac{S}{N} \right) \times D$$

Many more layers, due to

What is 6G?

- Communication
 - Data rate 100 Gb/s
 - Latency 1 ms
 - Coverage 100% (NTN)
 - Capacity 100 Mb/s/m²
- Data generation
 - Positioning \rightarrow Sensing
- Energy efficiency

- Adaptive network
 - Integrated access backhaul
 - <u>Dynamic</u> deployment
 - Multi-hop connectivity
 - Low cost, high flexibility
- Reliable network
 - D-MIMO (CoMP, mTRP)
 - <u>Dense</u> deployment
 - Multi-path connectivity
 - Relay and mesh network
- Computation
 - Centralized → Distributed
 (edge computing)

Timeline perspective

2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Basic r	esearch		Regional initiatives • China: MIIT, MOST, • Japan • EU: Hexa-X • Korea • US: ATIS, NextGen Alliance • More				Start req	Start work items Start study items 6G technical standardization et requirements discussion						
			Applie	d research										
			Techno	ology trials								↓ ↓		
🔳 Res	search 🔳	Standardi	zotion	Trials			s	ystem test	beds and	trials		Pre- commercial	Comme	ercial

Increasing capacity by adding more spectrum

- High frequency
 - High propagation loss
 - High peak rates
 - Low latency
 - High angular resolution
 - Sensing/Imaging
- Low frequency
 - Low propagation loss
 - Interference limited
 - Mobility
 - Massive MTC

Shannon considerations

- High SNR for extreme throughput, not power efficient
- Low SNR => low #bps/Hz- consumes a lot of capacity (BW)
- Sweet-spot in the middle
- Move users to correct frequency band for optimum capacity
- Beamforming and MU-MIMO also avoids being in the bandwidth limited region, increasing capacity
- Complex problem since UE traffic varies a lot

DL vs. UL power balance

- 1000x power difference between DL and UL
- In addition, TDD with 4:1 DL:UL ratio
- Mobile broadband>= unbalanced traffic need
 - Future use cases need more UL (e.g. holographic communication)
- Beamforming and MU-MIMO splits BS power between multiple UEs
- More antenna elements (electrically larger arrays) is beneficial:
 - Lowered BS power while maintaining EIRP (power efficiency)
 - More simultaneous UE:s, MU-MIMO
 - Better UL linkbudget

200mW

High frequency operation=> Need large arrays to overcome path loss

- Constant antenna area required to maintain UL linkbudget, (assuming fix UE EIRP)
- Maximum basestation antenna area ${\sim}1\,\text{m}^2\text{,}$ limited by windload
- Extreme # antenna elements feasible at high frequencies from antenna area point of view

Frequency/GHz

High frequency technology limitations

- SubTHz => approaching f_T/f_{max} of present RFIC technology
 - Costly to even generate gain
- PA power and efficiency drops, LNA NF increases, Switch and routing loss increases
- Wide bandwidth=> Converter power increases

- Available area per antenna drops $\sim 1/f^{\sim 2}$
 - Subarrays; separate RX/TX panels; single-polarized panels
- Routing loss very high
 - Antenna-In-Package ; Antenna-On-Chip

100 GHz Demo at MWC2023

100 Gbps peak downlink throughput 4 layers, 6.22 GHz BW at 100 GHz 0.7ms ping time

AiP module (16.5x14 mm)

- 8x8 array
- 64 TX/64 RX in 4 RFIC
- 1 up/down conversion IC

Full duplex operation

- Full duplex doubling channel capacity, reducing latency
- High frequencies (mmW)=>can fit two arrays with several 100 elements
- ~10 wavelengths separation=>antenna port isolation in the order of 80 dB
- All together 80+25+25+30=160dB isolation
- Full duplex have other issues CLI (cross link interference), BS<->BS, UE<->UE, BS<->UE
- Two antenna panels also enables monostatic radar

Summary

- 6G RF is mainly an evolution of 5G, no revolution
- New frequency bands needed to keep up with traffic growth (Centimetric band to avoid densification)
- SubTHz has lots of opportunities for performance enhancements
- SubTHz operation enables extreme throughput and new use cases
- Beamforming is here to stay and increasingly important at higher frequencies

