LUND UNIVERSITY

ETIN35 — IC Project 1 Report

UDP readout system for the physics department

Dimitar Dikov

2/22/2017

ETIN35 - IC Project 1 Report

Table of Contents

[, ASSIZNMENT: REAUOUL SYSTEIM ..ciiiiiiii ittt e e e et e e s et ee e e e sttt e e s s beeeeesabteeeesasaneesaseaeessaseeaessnsseeeennns 2
R X3 o a1 g V=T oL ARy o T=Tol 1 or- 1 (o) o PSPPI 2
[TV =T o I [0 Y o] (=] 0 4 1T 0] =1 6 o s LA 2
II. Implementation of the Serial Readout UNit (SRU) ..o uiiii ittt e e e tte e e e e bae e e e ebae e e s sbaeeeesasraeeesans 3
a. CMD/STATUS UDP Ethernet EMAC and UDP command/status payload..........ccceeecveeeiiieiieeccieeciee e 4
b. UDP cOmMMaNnd diStriDULION.cccuuiiiiiiiie ettt ettt st e e it e e s bt e e bt e e s abeesabeeesabeesbeeesnseesareeesareennnes 7
C. DCS COMMANG GECOERTeiiiiieiiiiete ettt ettt et s e e bt e e s bt e e bb e e s abeesabeeesabeesabteenteesabeeesnseesabeesneeesasenesaseenns 8
Lo T 0 G I TSRO P P PSP PPOPRRRPRR 10
€. DTC RX (DeSErializer @aNd MEBMOIY)uiii e et e ccteee e ettt e e et e e e e te e e e e ette e e e e ataeeeessaeeeessaeeesaasseeesanssesesansseeesanssnnens 11
f. UDP Readout FSM and UDP EMALC.uiiiiiiieieiciiee e ettt e ettt e e sttt e e e satae e e e saateeeesasbaeeesssseeessssseeessnssaeesansseeeessssenesennsens 12
= 1 Fo ol S CT=Y g =T = o o TSR PPR 13
1P o aT'o] [=T g Y= aN = AT T g T i d o TSI o 1 PSRRI 14
3. RDOCIK QN ADC ClOCK....cetteiutieiieeieeteeett ettt ettt sb e s bttt eat e et e e bt e s bt e sheesabesabe e bt e be e beesbeesaeeeateenteebeenbeesaeesasenane 15
o TR N g T {= =T gl DY i =Tot o] o N USRS 15
C. DTC RX DECOUEN ...ttt ettt ettt ettt ettt e sttt e st e ettt e s bt e e bte e s abe e s bt e e sabeesabee e nbeeeabeeasabeesabeesasbeesabaeesbeesabaesnsbeesabaeeseens 16
d. Address/Data demux and REPIY PACKE.ccuieriiiietiecee ettt ettt e ete e e re s be e s teestaeetaeeabeebeesbaesaaeetnesabeenns 17
€. SAILro INtErfAaCe CONTIOIIEEttt h ettt et b e be e s bt e sateeaeeeabeebeesbeesaeesatenane 19
f. DTC TX FSIM @Nd SEIAIIZEISeieueeeteeteeet ettt ettt ettt b e b e s at e a e et e et e e sbeesaeesatesabeeabeebeenbeesbeesaeesateenteens 21
IV. ASIC Synthesis & Place and Route implementatioNn..........cocciiieiiciiie ettt e e e et e e e e eara e e e e asaeeeenneeeens 24
TN 0 o [oo T 1y 1 =Y [a1 £ U LY=o F PP 24
[T o To I | o Yo UL TP POV PRSP 24
V. FPGA & CPLD SYNTNESIS. ..utiiieieiiieeccitee e ettt e e ettt e eett e e e e eteeeeeebaeeeeebteeeeasteeasasssaasastasaeaseseasasessesassseesasssnassnssanananes 25
VI. Implementation RESUILS & VErifiCatiON......c..iiii ettt ettt e et te e e e e bt e e e e ebte e e s ebeeeeeestaeeeesraseesssanaeanes 26
LV | R] o Tl [T YT] o F TSP 27
RV L =T =10 < PP PPPOPPPR 27
APPENIX L1 SYNTRESIS SCIIPL coiiieiiiee i e e e et e e e e s bteeeesbteee e e btaeeesaseaeesaseaeeesnsaaeesanstaeessnssneesanes 28
J AN o 01T o [o oI Y o Vo I o 1U =Y o] 1) SRR 29

ETIN35 - IC Project 1 Report

Assignment: Readout system

a. Assignment specification:

A prototype detector is to be developed that contains one SALTRO ADC chip and a CPLD Lattice LCMX02. The
communication between the CPLD and SALTRO is described in [1]. The CPLD will need to communicate via
Data Trigger Control (DTC) link [2] using Cat. 6 twisted pair cables with RJ45 connectors to a Scalable Readout
Unit (SRU). The SRU consist of a Xilinx Virtex-6 FPGA and it needs to convert the DTC link data to UDP packages.
The task of this project is to develop the logic in the CPLD and modify the existing FPGA RTL, including readout
protocols, data formatting, system controller, and clock management.

b. System Implementation:
The system contains 1 CPLD (Lattice MACHXO 2) and 1 FPGA (Xilinx Virtex-6 130T). The testbench
implementation of the system is shown on fig. 1. It consists of 5 main blocks:

Saltro Emulation model — An emulation model of the digital part of the SALTRO ADC chip.
Interposers — Delay blocks emulating a transmission delay over copper cables.

CPLD — Provides decoding of DTC commands to the SALTRO chip and data serialization when
reading out the channels.

SRU (Serial Readout Unit) — Generates trigger sequence for the CPLD/SALTRO, encodes DTC
commands and packages the readout data in UDP packets.

Ethernet Simulation IP — Ethernet IP generated using Xilinx Custom IP Generator. Reads UDP
packets in raw format and sends them to the SRU, in 8b/10b encoded format.

Testbench Architecture

SALTRO
EMULATION SALTRO INTERFACE SALTRO INTERFACE CPLD
MODEL

INTERPOSER

E

INTERPOSER

E

ETHERNET
SIMULATION ETHERNET 8b/10b INTERFACE SRU
IP

Figure 1: Testbench Architecture.

ETIN35 - IC Project 1 Report

ll. Implementation of the Serial Readout Unit (SRU):

On fig. 2. is shown the simplified SRU architecture.

I_I:

| Control cmd=————p»

L

Slow Command UDP '
Ethernet EMAC v

DCS Cmd decoder

DTCTX

UDP Cmd
Distribution

he)
£
o
k7]
i
A
P SRU Cmd decoder |

rdo cmd

nY
7

ontrol cmd reply

DTC RX
(Deserializer and
Memory)

Clock Generation Trigger Generation

)

Readout UDP
Custom IP

ot Readout FSM ot Readout data

Figure 2: SRU architecture.

The SRU can support up to 40 DTC connections to 40 CPLDs. The architecture consists of:

Slow control UDP Ethernet EMAC — This IP block contains Xilinx Custom IP Ethernet transceivers, MAC
and IP frame decoding [3]. Takes care of ARP and ICMP replies. Read/Write to CSR commands must
be send through this EMAC.

UDP Cmd Distribution — Based on the Nodesel bits in the UDP packet, this module distributes the
command to each of the DCS Cmd decoders or the SRU Cmd decoder.

SRU Cmd Decoder — This module contains the SRU CSRs, when Nodesel[40] is 1, the SRU would access
them.

DCS Cmd Decoders — A total of 40 decoders. 1 for each DTC link. Decodes the 8bit data from the
UDP/Cmd distribution to 32bit address & data.

DTC TX — Serializer and encoder for DTC commands/trigger information.

DTC RX — Deserializer and memory block. Once the event information is transmitted, it saves it into
memory, which is accessed by the Read out FSM as soon as the event finishes.

Readout FSM — Reads out the DTC RX memory and communicates with the Readout UDP Ethernet
EMAC by using AXI4 protocol. Currently supports only a single DTC link.

Readout UDP Ethernet EMAC — Packs the AXI4 data into UDP packets. Takes care of retransmitting
packets if they are lost.

Clock generation — Generates the necessary clocks and distributes them to each DTC module.
Trigger generation — Generates the necessary trigger sequence for the SALTRO chip. Supports 3
different triggering schemes: periodic, external and via UDP write to a SRU CSR.

On fig. 3 is shown the ASMD diagram of the SRU.

ETIN35 -

IC Project 1 Report

Readout FSM & UDP Custom IP

Ethernet TX

A

Read from Memory and
transmit data

A

DTC<N> RX

Event finished

Save Event Data to Memory

+

T

DTC packet = EVENT

rF

Slow Command UDP Ethernet EMAC

Send Reply

A

A

Calculate Reply

T

A

1

Wait for packet

protocol = ARP

protocol = ICMP

protocol = UDP

il

SRU CSRs

Read SRU CSR

WRITE CSR

A

DTC packet = STATUS

Deserialize data

Update SRU CSR or issue | T
FastCmd -
A
DTC<N>TX
L Send Command to DTC<N> |«

Figure 3: SRU ASMD diagram.

UDP Command Distribution

A

Save Packet

udp port = patrolview

T

<>
L

Nodesel = 41

Nodesel =N

a. CMD/STATUS UDP Ethernet EMAC and UDP command/status payload.

On table 1 is shown the frame structure of the UDP payload of a SRU control packet. This packet must be

crafted by the control software.

ETIN35 - IC Project 1 Report

Table 1: UDP payload format for the SRU command frame.

RESERVED[10:0] NodeSel[40:20]
RESERVED[11:0] NodeSel[19:0]
WR | CType | RESERVEDI[9:0] Address[19:0]
Data[31:0]
WR | CType | RESERVED[9:0] | Address[19:0]
Data[31:0]
WR | CType | RESERVED[9:0] | Address[19:0]
Data[31:0]

Nodesel[41:0] - This field has 41 active bits, corresponding to 41 slave nodes, including one SRU node
and 40 DTC nodes. The 41st bit (NodeSel[40]) maps to the SRU. NodeSelH[39:20] maps to DTC39-
DTC20. NodeSel[19:0] maps to DTC19-DTCO. If the corresponding bit is set, this command frame will
be forwarded to the command buffers in the mapped slave DTC nodes.
WR — This specifies the command type to be performed. “1” is Read, “0” is Write.
Ctype — This bit specifies which chip the CPLD should address: “1” SALTRO, “0” CPLD.
Address — This field depends on which chip is being addressed:

o For SRU and CPLD — The lowest 16 bits are used as a 16 bit address.

o For SALTRO — The lowest 20 bits are used as the address defined in the SALTRO

specification[1].

Data — Data to be written, if write command, or Os if read command.
Reserved — Reserved for future use. Set to Os.

Due to fifo limitations the maximum amount of commands per packet is 500.

Once the command packet is send from the host computer it is received by the Ethernet CMD/Status Ethernet
EMAC module in the SRU. It's schematic is shown on fig. 4. It contains the following modules:

Ethernet EMAC & Locallink Wrapper — Generated IP core from Xilinx. Transmits/receives 8b/10b
encoded signals to/from the Ethernet network. Uses 2 LocalLink interfaces for TX and RX.

RX frame decoder FSM and FIFO. — From all received packets, this module filters out only the ones
addressed to specific SRU IP/MAC address and protocol. Supported protocols are UDP, ARP and ICMP.
This module extracts some of the necessary data, like Source host, in order to reply correctly on an
ARP or ICMP request, Frame length. Contains a FIFO in order to buffer the incoming frame.

IP Packet processing FSMs. — Contains FSMs that check if the packet frames are correct. If there is
an error in the received packet it will drop it. Packages the ICMP reply data into a frame, to be
transmitted, if the SRU is pinged via ICMP. Send the UDP payload for decoding of NODESEL fields.
ARP reply FSM — Packs the ARP reply data from the RX Frame Decoder into LocallLink interface.

IP Reply FSM — A FSM that select one of the 3 possible replies to send to the TX frame encoder.

TX Frame encoder — Encapsulates the reply data with the Remote MAC/IP addresses and sends it to
the Ethernet Xilinx core.

]

ETIN35 - IC Project 1 Report

Remote MAC
=
<]
& = g
g = z
o
| | = |
gth_reset gth_reset l gth_reset
L 4 v ¥ ¥ ¥ v
| ARF Reply dat=p
T frame encoder . Ethemet MAC Local) RX frame decoder (—arp_reply—
S TXLLinterface®l RX LLinterface®| ot - o oo ARP reply F5M
arp_req—i
J:t eth_reset t |
5 L J m &
= Hs32ch
2 et EFE
w E = = =
o= i = A T
= ESa ERE
i s d z 23 &
5 s =B T
= eth_reset =T * l l
[¥ R
IP Reply FSM ot ARP LL T |IP packet processing
ot ICMP LL TX FSM
§—eth_resst—
el
L l E
'E ﬁ| m!
I o MW
% = tl|
o | = [=1
=]
=

(uDP DATA LLTX i Cul)
disctribution
Figure 4: CMD/STATUS Ethernet schematic.

On fig. 5 is shown the ARP RX and TX frame processing. There are 3 time periods. The first one is showing
the EMAC transmitting the received frame via the RX_LL interface. It is received by the RX frame decoder
and it is decoded to be an ARP request frame. During this time the reply frame is calculated. In the second
period the reply frame is send to the ARP Reply FSM, by asserting arp_req. This causes the FSM to store
the frame in a FIFO and when the whole reply is stored into it, arp_tx_good_frame and arp_reply are
asserted. In the third period the ARP LL TX interface is transmitting the reply frame to the TX reply mux
(IP Reply FSM).

ICMP RX frame decoding and TX reply is shown on fig. 6. The reply is processed in 3 stages. In the first
stage while the EMAC is transmitting the frame, the RX Frame decoder asserts icmp_frame signal (if the
protocol, ip address and packet type matches) which turns on the calculation of the ICMP checksum. The
second stage starts when the final byte of the ICMP request packet is decoded. The IP packet processing
FSM starts reading the FIFO soon after that. Since the header of the TX reply is known at this time, the
ICMP FSM packs it into another FIFO. After a while the payload of the request packet is inserted as the
payload of the reply packet and the rx_frame_processed signal is asserted. This releases the RX frame
decoder to monitor the next incoming packet, by deasserting the icmp_frame signal. In the third period
the ICMP reply packet is transmitted to the IP reply FSM which selects a packet to be transmitted via the
TX frame encoder.

ETIN35 - IC Project 1 Report

ck_ds

EMAC RX LL Interface
rx_ll_src_rdy_n
r_ll_sof n

I
1ho

T e e i

HﬁﬁdﬁrﬁHﬁHﬁHﬂrHﬁn‘HﬂﬂHﬁﬂHﬂﬂ

rx_ll_eof n | LI
r_ll_data IRREEERRRERRRER RN ERRRY o0
rx_ll_dode
ARP Interface
4 arp_tx_reply_frame - | I

ARP TX LL Interface
4. arp_tx_src_rdy_n | [

4. arp_tx_sof n | |
4. arp_tx_eof_n
4., arp_tx_data_out bl

[l | | I | | | | | | I | | | I
Figure 5: ARP RX frame and TX reply.

ck_ds

mmmmwmmmmwwwmmm A A

T

!
|
1

EMAC RX LL Interface

rx_ll_src_rdy_n

4

4 ne_ll_sof_n
4 r_ll_eof n
"

.+

i
!

rx_ll_data T

LI

e

r_ll_dodk
R Frame Decoder
4 icmp_frame | |
4., IempCheckSum INRERRERE
4., ip_rd_data
4. ip_rd_data_valid [
4

A

' rx_frame_processed Il
ICMP LL Interface

i

118}
1

4 icmp_tx_data_valid
4. icmp_tx_src_rdy_n |

P T T

4. icmp_be_eof n
4. icmp_t_data_out i

Figure 6: ICMP RX Frame and TX reply.

The decoding of a UDP Command packet is done very similarly to the ICMP frame. It consists of 3 periods,
shown on fig. 7. While the EMAC is transmitting the packet, the frame decoder is monitoring. if the frame
is using UDP and the IP and MAC addresses match, it asserts the udp_frame signal. When the whole
packet is received, the IP packet processing FSM initiates the FIFO in the decoder. A very simple UDP FSM,
counts how many bytes have been received, and asserts the udp_rx_dv signal, which signifies the UDP
packet payload. The UDP bytes are transmitted on the udp_rxd bus. Once the frame is processed,
rx_frame_processed is asserted, thus releasing the RX frame decoder to receive new frames.

rp
dk_ds
EMAC RX LL Interface

HﬂﬁHﬁHﬁHﬁrHﬂﬁﬁHﬁHﬁHMﬂTﬁ T T

4 r_ll_src_rdy_n
4 |l_sof_n

4 n_ll_eof n
"

.+

rx_l_data }:(III VRN
rx_|l_dodk
RX Frame Decoder
4. udp_frame |
ip_rd_data LEEEEE LR RO DR IRR R AR 00
ip_rd_data_valid [|
4. rx_frame_processed N
UDP RX F5M

EREEEEEEE DRI 00000y,

|
L
|
A A A R A A A A A AR A

4. udp_rx_dk
4. udp_rxd]
4. udp_rx_dv [‘]

DAL PEEERERE VIR ERRRREEE bR IR

Figure 7: UDP RX Frame decoding.

b. UDP command distribution.

After the UDP command frame is extracted from the IPv4 packet, it is received by the UDP command
distribution module. There the UDP destination port is matched. The NODESEL fields are decoded and

7

ETIN35 - IC Project 1 Report

C.

des_rx_d[7:0] FIFO] T
810 32 bits 'd_data [310]

Pl =)
RN Retglie Relg
SE| 287 | ¥

4 oo =)
e R Eie REh e
Sg|2g7 | E7

demultiplexed into separate bus dcs_rx_dv[40:0]. Waveforms showing the decoding of a packet with
NODESELO (i.e. 1st DTC board) and NODESEL40 (i.e. SRU) are shown on fig. 8 and fig. 9. The FSM takes
one clock cycle to compute when to assert the dcs_rx_dv signal, thus the dcs_rxd is the delayed udp_rxd
by a cycle. The first 16 bytes from the frame contain the UDP source & destination addresses, frame length
and checksum. They also contain the 8 bytes encoding the NODESEL. Thus for the first 16 bytes the
dcs_rx_dv is always kept low. Then based on what the NODESEL bits that are set in the packet,
dcs_rx_dv[40:0] is asserted. Thus the dcs_rxd data is driving the 40 DTC transmitters and the SRU Cmd
decoder with the same data, but different “data valid” signals.

wmmmwawmwmwmwmw L
[LT WMWMWMWMW:LLIIU
1B [YBhoo I fghod . 11 BT ¥8..J8hoo ¥ Jghoo J—Jehoo § [Jzhao

|
B Bhop T B BT 1Bha0 1__Eho T BT 8.7 J8hoo JEhoo JBhoo | 3. J8hao
(4 ho0oDo0oo00; T‘H'h 0000000001 l41'h000;|L

Figure 8: UDP payload addressed to NODESELO, the first DTC board.

ML LU UUUU1LU
LT L L L Ly
[JEhosy | J_ T JEho0 [Jshoo I_JBhoo T JEhoo J'hoo T X TBhoo ¥ T Y [IEhf jBhoo | J8hao
| |
L Bhoal T L L Y ¥ Bhio | jBhio ¥ [fghoo ¥ ¥Ehoo| ¥ Ehoo T ehoo I Y[JEhA jEhoo JE'h00
0 | 41'h0000030000 I I41'h1nnnnn 0000 |41'rnnnnnnnn.‘

Figure 9: UDP payload addressed to NODESEL40, the SRU.

DCS command decoder

In order to support broadcasting read/write operations to 40 DTC boards each of the DTC link must have
its own command decoder. The block diagram of the DCS command decoder is shown on fig. 10. It consists
of a FIFO and an FSM. The FIFO is used to cross into the DTC clock domain and to store the commands
from the packet, since the DTC link is orders of magnitude slower than Ethernet. The FSM reads 2 32bit
words, containing the address and the data respectfully. The State diagram of the FSM is shown on fig.
11.

DTCTX

udp_cmd_addr[31:0]
udp_cmd_data[31:0]
udp_cmd_dv

udp_cmd_ack

{fifo_rd_en

125MHz clk 40 MHz clk

Figure 10: DCS command decoder block diagram.

The FSM initializes in st0, and waits until the FIFO is not empty to proceed to stl. Stl is a state where the
UDP frame payload must be fully loaded into the FIFO, this ensures that there is always even number or
32 bit words in the FIFO. During st2 and st3, a single command containing 32bit address and data is
readout, to the transmitter. Since the FSM is Moore and the FIFO has 1 cycle RD delay in st4 & st5 the
udp_cmd_addr and udp_cmd_data are available to be assigned. In st5 udp_cmd_dv is asserted, signaling

ETIN35 - IC Project 1 Report

the DTC TX Serializer that there is a command valid and ready to transmit. When the DTC TX Serializer is
starting to transmit the command, it asserts udp_cmd_ack, releasing the FSM into st6, which select which
2 watchdog states it should go into, based on if this was the last command in the FIFO. The watchdog is
set to 160 cycles, since it takes a little over 128 cycles to transmit a command.

1
Q
Pl
GJ
o

fifo_rd_empty ==

des_rx_dv | fifo_empty

fifo_rd_en==1'h0;
clkent == 8'h0;
udp_cmd_dv == 1'b0;

udp_cmd_addr == 32'h0;

udp_cmd_data == 32'h0;

st2 —st3
I(dcs_rx_dv | fifo_empty)—» = --oereeeomeeeeeeee

fifo_rd_en ==1'h1;

fifo_rd_empty ==0 No change in registers,
waiting for des_rx_dv to

deassert

clkent == 160
clkent =160

clkent == 160

fifo_rd_en == 1'h0;
udp_cmd_addr =
rd_data;

fifo_rd_empty == 0;

udp_cmd_dv_ack ==

fifo_rd_en == 1'h0;
udp_cmd_data = rd_data;
udp_cmd_dv =1'h1;
clkent++;

fifo_rd_en == 1'h0;
udp_cmd_dv = 1'h0;
clkent ==0;

udp_cmd_dv_ack ==
fifo_rd_empty ==

Figure 11: DCS Command decoder FSM state diagram.

On fig. 12 waveforms of filling the FIFO with a UDP frame payload (containing 2 command) from the DCS
command distribution module, are shown. Soon after the first command is transmitted, followed by the
second one in a while.

|mmm LI

| TR
3Zhc0000e 12 I32'h000000% 132h30000060

3Zh000000J0 132123456 132h00000000

12h001 iizho20 {17hio0 J1zho20 {f12hibo

—
LI 'I_f"l_l_l_l_l_l_nl_l__f Sy |y |y Yy | _I_I_I_l_l_l__l_\ﬂ"m[_l_l_l_l_l

n [T

Figure 12: DCS Command decoder — waveforms.

ETIN35 - IC Project 1 Report

d.

RDOcmd

ABORTcmd

DTC TX

In order to support the 3 types of DTC commands [2] (Trigger, Slow Control Commands and Fast
Commands), the DTC TX module is connected to the three modules that issue them. To the DCS command
decoder — when issuing a CSR write/read command; The SRU CSR module — when a fast command is
issued; the trigger generation unit when triggering and abort command needs to be issued. The block
diagram is shown on fig. 13. It consists of a DTC packing FSM, 3 smaller FSMs which convert the command
pulses to a handshake interface, a serializer and output buffers. The handshake interface is required in
order to ensure the command will be executed, if the FSM is busy with another command.

cmd/ack handshake:

Serializer Output DDR buffer

DTC packing)
cmd/ack handshake FSM

> Output buffer

cmd/ack handshake:

udp_cmd_addr
udp_cmd_data

FASTcmd code

o [32..132ho00d
8 [327h . {37h1%

udp_cmd_dv

ASTcmd_ack
FSM
dtc_clk

The FSM diagram is shown on fig. 15. The FSM initializes in st0 and wait until a valid command is issued.
Based on which command is executed, it enters st1, st2, st4 or st13. In st1, st2 and st13, the corresponding
command code is asserted on dtc_pdin[7:0]. When entering st4, the read/write command code is asserted
and then the next 8 states are used to assert the 2 32bit words for address and data. A complete waveform
is shown on fig. 14. In the first period the read/write header code (OxE1) is asserted, then in the second
period the address, and in the third — the data is asserted. At the end of the waveform, it just so happens
there is a trigger sent unrelated to the CSR command.

005
456)

Figure 13: DTC TX block diagram.

)20 15h0040 J15h0d80 {15h0100 {15h0300 (15h0400 J15h0800 {15h1000 {15h4000 (I5ho001

| \
_:—L_I—L_I—L_I—L_b—L_I—L_I—L_I—L_.—L_I—L_I—L_I—L_I—L_I—L_I—L_F]
'hO0 JBhen | Ehiz] fFh34| JFhse] Jgh7s [(ghoo

T L T L I g L

[I [T [[I I [| [
Figure 14: Read Write command serialization and Trigger waveforms.

The dtc_pdin[7:0] gets serialized and that signal is driving the Output DDR buffer on negedge, while the
Trigger (FeeTrig) is driving it on the posedge, thus the DTC TX transfer is completed [2]. The 40 MHz dtc_clk
is directly driving the DTC CLK lanes.

10

ETIN35 - IC Project 1 Report

reset——

_________________________ st0

dtc_pdin == rdo_cmd_buffer == 1:
rdocmd_code;

rdo_cmd_ack == 1;

udp_cmd_dv ==1

dtc_pdin ==
rwemd_code;

dtc_pdin == 8'h0;

abort_cmd_buffer == 1

fastcmd_buffer ==

st5 —st8

dtc_pdin ==
abortcmd_code;
abort_cmd_ack == 1;

dtc_pdin ==
udp_cmd_addr;

_________________________ st14 st9 —stl12

dtc_pdin ==
FastCmdCode;
fast_cmd_ack == 1;

dtc_pdin ==
udp_cmd_data;

dtc_pdin == 8'h0;

Figure 15: DTC TX FSM state diagram.

e. DTCRX (Deserializer and Memory)

The DTC protocol has 3 different packets [2] that are sent from the CPLD. The block diagram of the DTC
RX module is shown on fig. 16. The data is deserialized and send to the DTX RX Decoder. It is an FSM whose
state diagram is shown on fig. 17. In order to receive correct data, the serializer must be aligned to the
sync word “OxBC50”. This is done in the ALIGN state. Once that is done, the Decoder enters WAIT state.
Once a valid frame header is detected, it proceeds to the corresponding branch: STATUS, REPLY or EVENT.
In the STATUS branch, just the LSB bit is used, it signifies if the SALTRO chip has asserted the ERROR flag.
The REPLY branch consists of 4 stages, used to get the two 32bit words reply: address and data from a
CSR read command. In the EVENT branch, every 2 cycles it writes to the memory a single 32 bit word, until
the trailer is detected. Once the end of the event frame is detected, the Decoder signals to the Ram
Management that the writing to the ram has finished. The Ram Management asserts RamFlag, which will
stay high, until the Readout FSM asserts RdConfirm, when the final word was readout.

11

ETIN35 - IC Project 1 Report
[—RdConfirm: TofF
o/From ’
RAM Management | Ram FlagRam RD interface—§» READOUT RAM

WrConfirm

word align cmd (from CSR)

DTC RETURN LINES

readout data

Input deserializer [—dtc_rx_deser[15:0]-9 DTC RX Decoder

ErrFlag

To CSR LLFIFO

Figure 16: DTC RX block diagram.

cmd reply data

DTC DATA LINES

RX LL reply: To UDP TX LL MUX

[
-
[
P
[
e

dtc_deser_align ==

REPLY4

Waits for the alignment
of the deserializer to
finish.

dcs_reply_load = 0;
dcs_cmd_update = 1;

gn ==0

dtc_deser_align ==

dtc_deser_ali

———
dtc_deser_align ==

STATUS [s
Wait for valid header or break of REPLY1-REPLY3

FEE_FLAG = alignment. dcs_reply_load = 1;
deser_dout[0]; deser_dout == 16'hDCDC \ dcs_reply_load = (deser_dout == | 4ocor gout == 16'hF7F7 -7 ’
F7F7)?1:0; -

deser_dout == 16'h5C5C

{ram_din, deser_dout} == C5D5C5D5C5D5

{ram_din, deser_dout} != C5D5C5D5C5D5

EVENT HIGH

EVENT END

WrConfirm =1;

EVENT LOW

ram_en =1;
ram_wen =1;
ram_din = {deser_dout,
ram_din[15:0]};

ram_en=1;
ram_din = {16'h0, deser_dout};

Figure 17: DTC RX Decoder state diagram.

f. UDP Readout FSM and UDP EMAC.
A temporary FSM is implemented in order to convert the readout of a single DTC board to AXI4 stream

interface used by the Readout UDP EMAC, which is already synthesized IP, from another project.

12

ETIN35 - IC Project 1 Report

In the beginning of a packet transfer shown on fig. 18 the FSM calculates the total amount of data in bytes
that will be transferred and asserts it on the tuser input of the AXI interface. Tvalid is asserted, when the
first byte is ready to be transmitted. After a while tready is asserted by the EMAC. The transfer continues
by sending a new byte each cycle as long as tready is high. When the last byte is to be transmitted, tlast is
asserted for a single cycle and tvalid is deasserted.

N |y Yy I ey Sy I Y ey ey I)y oy
|
|
[
10h3E0
10'h0pd J10hgo1 10'h002] J10hoo3 J10hook J10'hoos J10hgos 10h007] J10'hoos J10ho0 J10'hooa J10h00b 10h00c
 32h4D360000] {32h40B60070 [¥ {32ho0... Y[Y32hool.. ¥ {3Pho0... [¥32ha0... { {32ho0. ¥ Y32hod.. ¥ ¥32hotl.. ¥ f3Phoi.. | Y532hod.. { {3ohot. [{35hot.. T
N 3 15264
Zho I Zh
Shoo N A O A A A A O O O O A O O O B
I
|
15d3264 8 15264

Figure 18: Beginning of event transmission to UDP Readout EMAC.

g. Clock Generation
The SRU supports clocks from external source or from on-board XTAL. The block diagram is shown on fig.
19. The LVDS clock lines come from their corresponding pads, and are buffered by an IBUFGS. Then a clock
mux can be programmed by software by writing a CSR to switch to the external clock. The dcsclk output
is used only when booting up, to drive the flash controller that programs the FPGA.

| RDOCLK
DcsSrcSel (from CSR)

)

desclk
brd_clk Ivds IBUFGDS brd_clk—p | TX Serializers

ext_clk Ivds IBUFGDS ext_clk—pp]

4. SerBitdk[0]

4., SerBitckDiv[0]
4. DeserBitdk[0]
4. DeserBitdkDiv[0]

“. SerClklodkst

Clock MUX

h 4

PLL

RX Deserializers

dout_deser[15:0]

Figure 19: Clock generation block diagram.

After the clock mux locks, the PLL starts locking and asserts SerClkLockSt when locked. After this point the
clocks are stable and can be used by the TX Serializers and the RX Deserializers. On fig. 20 is shown the
simulation power up and locking of the clock generation circuit. Since it’s crucial that the CPLD boards are
triggered at the same moment, the TX serializer clocks’ phase is constant and cannot be changed. The RX
deserializer clocks’ phase is tunable using an FSM and using the data feedback from the serializers. Though
this functionality has not been tested as part of this project.

[UL LA L AL [LILULATUL UL
| (LILALULALTULLALULLY

1 (LU

[[R Y

1 (LU LU

Figure 20: Power-up simulation of the clock generator.

13

ETIN35 - IC Project 1 Report

Implementation of the CPLD:

The CPLD architecture is shown on fig. 21. The main functional block are:

RDOCIk input buffer and ADCClk PLL— This module converts the LVDS DTC Clk into single line RDOCIk
and from it a PLL generated the ADCClk sampling clock which is 2x or 4x slower than the RDOCIk.
DTC RX decoder — Decodes the DTC command on the DTC trig line. If it is a Write or Read CSR, it will
be sent to the Cmd/Data demux. If it’s a fast command it will send it to the Saltro Controller.

Trigger decode — Decodes the Trigger command, and toggles the L1 & L2 lines respectfully.

Cmd and data demux, Reply data packer — Distributes the Address/Data lines according to where they
are for, the CPLD CSRs or the SALTRO chips. Also packs the reply data when a read command is
executed.

CPLD CSRs — Control Status registers for the CPLD.

Saltro Interface controller & Readout LIFO — Converts the commands in the Saltro interface format.
Also converts the readout data format using a 40 bit wide LIFO and a 32 bit wide FIFO and sends it to
the DTC TX FSM.

DTC TX FSM and Serializers — An FSM drives 2 DDR serializers which are transmitting readout or reply
data on the DTC data/return lines.

DTC RETURN LINES
DTC DATA LINES

RDOCIk IBUF
ADCCIk PLL

DTCTX FSM &

Trigger Decoder DTC RX Decoder L
Serializers

Icpld addr/data—]—p] CPLD CSRs

addr/data demux
reply addr/data
packer

N
7

L1 & L2 triggers csr reply data

RDO cmd

dl
-
>
«
[—— ABORT cmd

l—addr/data—]
| -
readout fifo data————— P

€—saltro addr/data—y

l——RDO & ADC Clk

[—— Other Fast Cmds

Saltro Interface Controller & Readout LIFO

SALTRO INTERFACE
SALTRO INTERFACE

Figure 21: CPLD Architecture.

14

ETIN35 - IC Project 1 Report

The ASMD of the CPLD is shown on fig. 22

DTCTX

DTC TX Serializefs and FSM Addr/Data Demux and CSRs DTC RX & Trigger Decoders
A

Serialize data Wait for command [
\ 4 Is it CPLD CSR «

> Read or Write CPLD CSRs

v F

Send Reply to SRU

Is it trigger?

Saltro Controller
reply

Put Channel Readout Data in
FIFO

4

Is it CSR Command

Save data in LIFO

Is it Fast Command

T T
readout Is the data readout or h
reply
A 4 ;
A Send Command to Saltro Trigger the Saltro

Saltro Interface Trigger Lines

Figure 22: CPLD ASMD Diagram.

a. RDOClk and ADC clock
The CPLD works on 40 MHz RDOCIk which is the same a the DTC clock. In order to control the resolution
vs sampling time, the ADC clock can be 2 times or 4 times slower than the RDO clock. The block diagram
of the clock generation is shown on fig. 23.

adc_clk_div (from CSR)

——div2—
m ILVDS buffer dic_clk ADCCIk PLL ADCClk—p>

divd—p»i

Figure 23: ADC clock PLL and DTC clock buffer.

b. Trigger Detection
The trigger sequence is detected by a detector, which consists of a shift register sampling the dtc_trig line
on negedge. Then the output of it is monitored by an FSM, which generated the L1 and L2 trigger. The
state diagram is shown on fig. 24. The FSM’s initial state is WAITO. When the shift_reg has a value of “0x2”

15

ETIN35 - IC Project 1 Report

it means that it has received a L1 trigger. Thus it asserts it on the next cycle, and enters Trig_L1 state,
where L1 trigger is hold low for another 10 clock cycles and then returns to the initial state.

When the shift_regis “3”, the FSM changes state to WAIT1 where it detects if the L2 trigger is received or
there was an error in the trigger command. If a valid L2 trigger is received it enters Trig_L2 state, where
trig_12_nis asserted for 2 cycles. If the trigger was not valid in WAIT1 state, the FSM enters WAIT3 state.
There a small timeout is added in order to ignore the false trigger. Since the trigger data is the only data
sent on negedge, it can be sent together with a Slow or Fast command, an example of which is shown on
fig. 25.

clk_cnt =9

shift_reg == 4'b0010

Trig_L1

clkent = 0;
trig_l1_n = (shift_reg ==
4'b0010)?0: 1;

clk_cnt++;

clk_cnt == clk_ent == trig_11_n=0;

shift_reg == 4'b0011 clk_cnt==1

clk_cnt =5 clk_cnt!=1

shift_reg != 4'b0110 shift_reg == 4'b0110

clkent++;
trig_11_n=1;
trig_12_n=1;

clk_cnt++;
trig_12_n=0;

trig_11_n=1;
trig_12_n=1;

Figure 24: CPLD Trigger decode FSM.

Il]]

ho Ti#ho TR
Zhi 1Zhi TR0 JEho
| b

Figure 25: Trigger detection in the middle of WR/RD command.

c. DTCRX Decoder

The DTC RX decoder is implemented similarly to the Trigger decoder. The dtc_trig line is sampled on
posedge by a shift register which trigger the FSM, that decodes the command. On fig.26 the state diagram
of the FSM is shown. It initializes in st0, in which it waits to receive a valid header code in the shift_reg. If
any of the 3 fast commands (channel readout, abort or reset) are received, the FSM enters the
corresponding state and asserts the specific command flag and return to the initial state. If a slow WR/RD
command header is received, the FSM enters stcmd1 state, where it waits for the shift_reg to receive the
address, data, Ctype and WriteRead flag. Then it enters stcmd2, where it asserts dtc_cmd_exec and the
address, data etc. fields. It waits in stcmd3 state until a dtc_cmd_ack is received from the cmd demux.

16

ETIN35 - IC Project 1 Report

cnt I=‘d11

cnt I=‘d19

shift_reg == 00E2,

strdocmd
clkent++;
rdo_cmd ==1;

shift_reg == 00EA

shift_reg == 00E8

abortcmd

cnt !=‘d19

clkent++;
abort_cmd ==1;

clkent++;
reset_cmd ==1;

shift_reg == 00E1

dtc_cmd_ack or timeout

cl

kent++;

dtc_cmd_exec ==1;

stemd1

cnt !=‘d62

clkent++;
Waits for the shift_reg to be
filled with addr/data bits

cnt == ‘d63

A

Figure 26: CPLD DTC RX Decoder FSM state diagram.

d. Address/Data demux and Reply packer.

clkent++;
Assign cmd addr/data
from the shift_reg.
dtc_cmd_exec==1;

When the RX Decoder receives a Write/Read command, based on the Ctype (dtc_cmd_feenal) the demux
module sends the command to the CPLD CSRs or the Saltro Interface Controller. On fig.27 and fig.28 are
shown waveforms of Read and Write to the CPLD and to the SALTRO.
When a RD command is executed and an ack is returned by ether the CPLD CSRs or the SALTRO Controller,
and the command is READ, a small FSM shown on fig.29 is triggered. It asserts reply_ready. Which in turn
triggers the DTC TX FSM to start transmitting the reply data. While the TX FSM Is transmitting the data
frame_state is kept high, thus ensuring the CPLD will not send another reply_rdy request in that time. This

handshake is shown on fig.30.

mmmw@mwmﬁmwmmmmmmmmmmmmmmmmmmﬂmmmmﬁmmmm
I Il M | Ry T)
s0hooaaooooo0o000.... O e O O O O 0O
2ho 5ha [C&he J&Ho!
|
20h00e12 ‘ PORO00B0
20°h00000 20h45673
—
| |
Shiz fhe0
1610000 6h5678
1670000
=
4., saltro_cmd_rw ;
.. saltro_cmd_addr 20h00e12 20 hD00E0
. saltro_cmd _rx 20'h00000 20h45678
saltro_cmd_tx 20h05500
saltro_cmd _ack

Figure 27: Write CPLD CSR command waveforms .

17

ETIN35 - IC Project 1 Report

nmmmmmmmmmmm MLAMLLLAAL N LU

UL 1

srhoonoooooodoasoaooon [OO O O O O O O O o o o OO OO o000 Es

ho ha {ihe J#ho
4. dtc_cmd_exec |
4. dtc_cmd_rnw
4. dtc_cmd_feenal
... ditc_cmd_addr Ziho0e10 b0hd0e12
.. dtc_cmd_data 2{'h00000

—

4. cpld_cmd_exec
4. cpld_cmd _rnw
4. cpld_cmd_addr Shi 012

l?'hUUUU

Tehoooo
4., saltro_cmd_exec
4. saltro_cmd_rw |
4. saltro_cmd_addr 'h00e10 {P0h00e 12
4., saltro_cmd_rx 20'h00000

saltro_cmd_tx 20R05500 r-20h05500
saltro_cmd_ack

Figure 28: Read SALTRO CSR command waveforms.

=
(]
v
[
b

I(dtc_cmd_ack & dtc_cmd_rnw)

reply_rdy =0;

Iframe_state

dtc_cmd_ack & dtc_cmd_rnw
frame_state

Iframe_state

reply_rdy ==0;

Figure 29: DTC Reply_Rdy FSM state diagram.

QR LRy A gy g Ry e R Ry R A

R O O O Oy O o e Y Y30 hio00000000000G 000000
ahf 1 ¥ha 4ha
I |

4. dtc_cmd_exec
4. dtc_cmd_rnw
dtc_cmd_ack |
SALTRO CMD Interface
4. saltro_cmd_exec [|

4. saltro_cmd rw
#a saltro_cmd_addr 20'h00e10 {b0hooe12
4., saltro_cmd_rx 2 20h00000
saltro_cmd _bx 2 20h05500 H—{20ho5500
saltro_cmd_ack
Read reply Interface —|

4., reply_addr Zhconooe 10 32hc0000e12
4. reply_data 52hoo005500 Y37'h000055p0
. reply_rdy
I |
Zh fZhi JZhz 1Zho
N [T Iy Yy I A A oy o 1 rere redre
N O O Yy I 1y 1 A o S [R p Iy R I g Iy

Figure 30: Reply_Rdy and frame_state handshake.

18

ETIN35 - IC Project 1 Report

e. Saltro Interface Controller

SALTRO BUS

The Saltro Controller consists of 2 FSMs, a dual port RAM and a FIFO. The block diagram is shown on fig.31.
Every time the Saltro Controller receives a command, the Command Control FSM (CCFSM) takes control
of the bi-directional BD bus. The state diagram of the CCFSM is shown on fig.32. If the command is
Write/Read SALTRO CSR, the state machine enters st_cmd1, where the address and data are sampled, by
the bdout registers (those registers drive the BD bus, when cstbn is asserted), also “writen” is sampling
the command type. Then in st_cmd2, the chip select is asserted, sending the command to the SALTRO
chip. Based on, if the command is broadcast or not, the state enters a st_cmd3 (where it waits for ackn to
deassert and chip select is deasserted) or st_cmd4. In st_cmd4, after a few clock cycles the FSM returns
to the initial state.

When a Channel Readout (CHRDO) command is send the FSM enters st_trsfl, which initializes the
handshake with the second FSM in the controller. At his point the second FSM starts to wait for the trsfn
to assert and then deassert, which means that a single channel had been readout and put into the Channel
RAM. In st_trsfl the Control FSM also checks, if the last channel has been readout or if the current channel
is masked. If the channel was masked, then the ch_addr is incremented in st_mask and the channel mask
register is shifted.

If the current channel has not been readout yet, the FSM goes to st_trsf2, where the bdout registers
sample the correct command. In this state, if the second FSM has not yet readout the channel ram from
the previous channel, it will delay the execution of the command. Also that will happen, if the 32bit fifo
will not be able to fit the new data coming in, since the bottleneck is the DTC TX bandwidth.

Once the Channel RAM has been read and the fifo can accommodate the new data, the FSM executes a
channel readout command for channel with address ch_addr in st_trsf3. The ram wr_addr is set to 0 in
order to start writing the ram from the start.

In st_trsf4, the FSM waits for ackn to be asserted or for timeout to occur. In st_trsf5 the chip select is
deasserted and the FSM is waiting for the transfer to initialize. If this doesn’t happen a timeout will occurs.
In st_trsf6 the FSM is waiting for the transfer to finish, at this state the wr_addr of the ram increments,
and the Channel ram is filled with data.

When a transfer is occurring the second FSM will assert con_busy, until all the data has been readout from
the RAM. This is because the RAM is implemented as a LIFO, and no new channel data can be read until
all of the previous channel data has been readout.

Once all the channels have been readout a Read Pointer increment command is issued in st_trsf7 &
st_trsf8, which completes the readout of one event.

Address/Data Demux W/R cmd CHRDO or ABORT{ pTC RX Decoder
cmd
'S

A AA

BD[39:0}

saltro_cmd_tx altrocmdiack—|
\ Command

stbn

riten

fifo_almost_full
kn: = T

I—BD[39:0]p]

BD[19:0]

reg

40 bit Channel RAM

trsfn—pm

fifo_empty:
32 bit FIFO —fifoq[31:0]
[——fifo_rd_req

-dstbr

£
S
Ly
o
a

|

P ssjdwes
sa|dwes
so|dwes

=m

Counter

Figure 31: Saltro Controller block diagram.

19

ETIN35 - IC Project 1 Report

J_,
]
n
4]
-

Itimeout ¢ idl
st_idle

ram_addrclr = 1'b0;
bdout = 39'h0;
writen = 1'b0;
cstbn=1'b1;
saltrochmask_reg = saltrochmask;
TimeOutCnt = 16'd0;
saltro_chrdo_en = 1'b0;
ch_addr = 8'h0;

st_trsf8

bdout = [saltro_cmd_addr,
saltro_cmd_datal;
writen = saltro_cmd_rnw;

saltro_cmd_exec

timeout

abort_command

st_trsf7

st_cmd2

chrdo_cmd

bcast_rp_inc_cmd; ch_addr==16

BCAST & timeout

timeout

st_mask

st_cmd3

saltrochmask_reg >>1;
ch_addr++;

saltrochmask_reg[0] == 1:

saltro_chrdo_en = 1;

trsfn == 1 | timeout

trsfn==0 con_busy | fifo_almost_full

st_trsf2
timeout 0§ [

bdout = ch_rdo_cmd;

trsfn ==
trsfn==1

st_trsf3

sttrsfA O\ T

st_trsfS ram_addr_clr=1;
satrochmask_reg >> 1;
cstbn=0;
writen =0;
ch_addr++;

A

ram_addr_clr =0;

cstbn=1;

Figure 32: Saltro Controller CC FSM block diagram.

The readout waveforms of the first channel from the SALTRO are shown on fig.33. Once the readout
command is issued and the SALTRO chip returns ackn, the transfer of data starts. This causes the wr_addr
to increment and con_busy to be asserted. Once the transfer finishes, the fifo is starting to be filled with
data. Once all the ram has been readout, the next readout command is issued. On fig.34 is shown a
complete readout of the 16 analog channels. During the 5" channel readout, fifo_almost_full is asserted,
which prevents the Control Command FSM from issuing readout commands. Thus the spacing between
readouts is more spaced away.

20

ETIN35 - IC Project 1 Report

rdack LA AR AR AR AR A AL A LA AR A AR AR A AL AL AT AAAARAANARAT
altrordo_cmd 1
Command Control FSM
Shod 00, J5hos 5hia 5 hoe] 1 J5...JSh8 Shiz
2h00 J3ho1 [¥ghoz
[— [
—
[[
B0, EREEE RN RN EERRE RN RERRRRIRRRERRREE A0, STEREREN
(LA ML L
| | [
ho00 O o0 eho 27 Shoo0 IEEREES
1
m'hoooooﬁmoo O e O ey e OO O O OO 00 fa0ha4ce8a5496 oo
32h00000GH0 O O 32 h00000000
L
4., fifo_empty | |
fifo_rdreq N | N
. fifo_q 32'h00000$?_0 132h409. | 1370001, {37h004.] {37h007.], Y37ho0a. .IIaz'huod. . 37h010.., 3Zh01...

Figure 33: Readout of a single channel.

rdodk —Fw
altrordo_cmd
Command Contral FSM
ALrEhos YY5ho ¥I5h: AI5ho: 15hos ¥i5hos Hf5hos Ti5hos WiThoe ¥YThpe YiFhpe iFhoo
i JEhos [J8hoe Jgho7 fg'hoa Jg'ho3 je'hoa Je'hak] j5'hod 8hod f&'ho J&'ho Y Ja'hoo
[T [[[[[[[[[[Tl
fifo_almost_full L] LI LI LI L L LI LI L LI L
con_busy 1 1 1 1 1 [1 1 1 1 1
Saltro Chip
I [I | [[[[[[Il
— L =] & 12 = = & B =
| 1 1 ||] 1 | ||] 1 ||
L i L L L L U L I L L
4. ram_wraddr 7 JmOh037 Jmoh027 mon027 (Woh0P7 (mOh0P7 Wond27 Jmon02/ moh0Z27 \mOon027 |@on027 yEoH027
[4... ram_addrelr | | 1 | | | 1 | | 1 |
Y — ET VI — CI0Y I — i e —) e — e — s (v — £V ha.. ‘2., mAihD... jeA0hI4ca425496
"ho0...;m32h00. .. m32h00... m32n00... ae32h00. .. m32h00.. . m3aho0.. . m32hoD.. w3dho0.. m3Pho. . m32ho0. . mi2 000000
I I I
fifo_rdreq
4. fifo_q Thc5d5c5d5

)

Figure 34: Readout of 16 channels.

DTC TX FSM and Serializers

The DTC TX module consists of an FSM, a 2 bit counter, shift register and 2 serializers. On fig.35 is shown
the block diagram of the DTC TX module. The FSM is triggered when a Reply for a Read Cmd is received,
or a status request, or the event fifo is not empty. The FSM State diagram is shown on fig.36.

Address/Data Demux

DTC RX Decoder Status request:

fifo_empty

Saltro Controller

bitent_flag:

Counter DDR Serializer
txword_load
A
tx_word Shift register
A

Figure 35: CPLD DTC TX block diagram.

DDR Serializer

DTC DATALIN

DTC RETURN LINES

ES

21

ETIN35 - IC Project 1 Report

Ibitent_flag

Ibitent_flag

l
[
n
[
e

ststl —sts4
tx_word = 16'hBC50;
tx_word = 16'hDCDC;
tx_word = status;
tx_word = 16'hBC50;

frame_state = 1;
tx_word = 16'hBC50;
tx_word = 16'hF7F7;

tx_word = reply_addr[31:16];

tx_word = reply_addr[15:0];
tx_word = reply_data[31:16];
tx_word = reply_data[15:0];
tx_word = 16'hBC50;

tx_word = 16'hBC50;
frame_state = 0;

Status Request:
bitent_flag

Ibitcnt_flag

Ififo_empty

steventend?2 Ibitent_flag

tx_word = 16'hC5D5;
fifo_rd_req =0;

stevent4

tx_word = tx_word;
fifo_rd_req =1;

steventl steventfel

tx_word = 16'hBC50;
fifo_rd_req = 0;

tx_word = 16'h8012;

bitent_flag
Ibitent_flag

bitcnt_flag bitent_flag

steventendl stevent5 Ibitent_flag

tx_word = 16'hC5D5;
fifo_rd_req = 0;

Ibitent_flag

tx_word = tx_word;

fifo_rd_req = 0;
stevent2 fife
_________________________ ifo_empty steventfe2

tx_word = 16'h5C5C;
fifo_rd_req=0;

tx_word = 16'h8012;

Ififo_empty & !timeout
bitent_flag

tx_word = fifo_q[15:0];
fifo_rd_req = 0;

bitcnt_flag

5 Iu23q

stevent3

tx_word = 16'hBC50;

bitent_flag fifo_rd_req=0;

!bitcnt_ﬁg

[og:T€]b 0414 13 Bey,

stevent?7

tx_word = fifo_q[31:16];
fifo_rd_req = 0;

T1a.¢

bitcnt_flag & fifo_q[31:30] != 11

timeout

Figure 36: DTC TX FSM state diagram.

If a CSR reply is to be sent, the FSM enters stcmd1 to stcmd7, where on every 4% dtcclk cycle, the tx_word
gets updated firstly with the DTC header code for a reply “OxF7F7”, then the address and lastly, reply data.
Similarly, if a status request is received, the FSM enters stst1 to stst4, where the DTC header code “DCDC”,
then the status bits (currently only the LSB bit of the status bits are used).

If the event fifo is not empty the FSM enters stevent1, where a synchronizing word BC50 is added in order
to separate, the DTC packets. In stevent2, the DTC event header “Ox5C5C” is asserted. In stevent3, the
event fifo is checked if it is empty. If this is the case, the TX FSM will assert a dummy 32 bit word
32’h80128012 while the Saltro Controller is able to read more channels. In stevent4, a request for data
from the fifo is issued. Then stevent5, is added as a delay state, while the fifo_q is available. In st_event6
and stevent7, the data from the fifo is transferred to tx_word. The FSM loops around to stevent3, if more
data need to be transmitted. If the event end is detected in stevent7, one more 32bit event trailer word
“C5D5C5D5C5D5” is transmitted and a status frame is added. The waveforms for the beginning and end
of an event packet transmit are shown on fig.37 and fig.38.

22

ETIN35 - IC Project 1 Report

fifo_rdreq
4. fifo_empty
. fifo_g 3 000 132h40360070 132100100803
4 st y J5hoc {5hod J5hoe J5hi10 [f5hil f5hiz [{5hi3 [Fhoe {5hi0 [{5hii f5hi2 [[5hi3 f5hoe |
4 bitent h3YZhD 1Phi PRE YFh3 YPHD PRt Vo2 YPha Yoo PRt TRz R Y20 ohi PH2 YFh3 JPRD YPhi YFRE PR3 TR0 YPhi YRz Yohi YoHD PRt
4 bitent_flag 11 T 1 11 11 11 I
4 toword Jihacsc J16h0070 J16h4096 J16ho803 J15h0010
-+ boword_load
4 data_hit4 J#hd Yahc Tfahb Y¥aho [¥ghs Jghc [f#hb Y#ho [f#hs Yahc [fhb f#hc [J#hs Yahc [J#hs Jaho [f#h7 §Fho Jghe [#hs faho [j#h4 J9h3 [f9ho |
DTC TX Lines
4. dtc_data | L | Il]
4. dic_return I I I 1 1 1 [

Figure 37: Beginning of event frame transfer.

nipipEpipEpi g pigipipgEpl gl g p S el g iyl E g p iy i p il p Ny pEplipR
fifo_rdreq 1
4., fifo_empty |
Ph0S475456 {3hc5d5c5d5
j5hi3 5.05..15.. 5. [5hi3 i5hiq i5his i5hos 5hoa Shia Shib Shoo
e Jel o Pl Yo Yol o Pl o Pl o o ol o ol Yo ol o Yor Yo Yol o ol Yo Yol Yo ol Vo Yol Yo Yol Yo Yol Yo Yol Yo Yol Yo, Yol Yo ol fo. Yol Y
1 71 1 1 71 71 71 7 71 71 71 L
16h545 16h054: [T6hc5d TE b T6hdcd 16h000 16 hbesd
1 [l 1 1 1 L 1 1 1 1
data_bit4 ...4‘..[4...4‘..[4...4‘..[4...4‘..[4...J:4‘..[4...:(4‘..[4...:(4‘..14.‘.I4‘..I4.‘.I4‘..I4.‘.I4...I4.‘.I4...:(4.‘.I4...:(4.‘.I4...:(4...I4...:(4...J:4...:(4...4...:(4...4...:(4...4...:(4...4'h0 0 O O E
DTC TX Lines
4. dtc_data M] I | L LT I_FJ_I_]_I_L e B ’_ |
4+ dtc_return M LT | ! e m m M m 1 — LML [

Figure 38: End of event frame transfer.

23

ETIN35 - IC Project 1 Report

IV. ASIC Synthesis & Place and Route implementation

a. Synthesis constraints used
e Maximum speed.
The CPLD design was synthesized for maximum speed using an unrealistically fast clock of 2 ns clock
period. Due to the CPLD containing proprietary Lattice IPs, they were black-boxed. Thus the area and
timing report of the synthesis is unrealistic with only 5.8 % of the area taken by logic and the rest taken

by the pads (Table 2).
Table 2: Area report for the ASIC synthesis.

Hierarchy Max. speed [um?] Percentage
pads (wrapper) 390 237 100
Top 22817 5.8

On table 3 is shown the number of sequential and combinational cells for the CPLD.
Table 3: Cell report for the ASIC synthesis.

Cell type Number

Combinational 21
Sequential 82

Critical path of the synthesized design is way off than realistically with only 3.07 femto seconds.

b. Place and Route
Place and Route was performed on the synthesized netlist in 65nm technology. The layout is shown on fig.39,
which is practically empty, due to the blackboxing of the custom IPs.

Figure 39: CPLD Layout.

24

ETIN35 - IC Project 1 Report

V. FPGA & CPLD Synthesis.

On table 4 is shown the SRU post Place & Route report utilization of the Virtex 6 FPGA.

Table 4: SRU Virtex 6 Utilization.
Feature Used Available Percentage

Slice Registers 37900 160000 23%
Slice LUTs 32913 80 000 41%
Slices 12181 20 000 60%
RAMB36E1/FIFO36E1 99 264 37%
RAMB18E1/FIFO18E1 6 528 1%
BUFG/BUFGCTRL 16 32 50%
ILOGICE1/ISERDESE1 160 600 26%
OLOGICE1/OSERDESE1 41 600 6%
BSCAN 1 4 25%
BUFR 3 30 10%
EFUSE_USR 1 1 100%
GTXE 2 20 10%
IBUFDS_GTXE1 1 10 10%
MMCM_ADV 2 10 20%
STARTUP 1 1 100%
SYSMON 1 1 100%
TEMAC_SINGLE 2 4 50%

On table 5 is shown the post Place and Route utilization of the Lattice MachX0O2 CPLD.

Table 5: Lattice MachX02 CPLD utilization.

Feature Used Available Percentage

IOLOGIC 24 280 8%
SLICES 862 2160 39%
GSR 1 1 100%
EBR 7 10 70%
PLL 1 2 50%

25

ETIN35 - IC Project 1 Report

VI. Implementation Results & Verification

The block diagram of the prototype system implemented in hardware is shown on fig.40. A PC is sending commands using
custom software. A 1GBit/s switch is used to route the commands and readout data, since the PC has only 1 LAN card. The
SRU is triggers using a special trigger UDP packet. The SRU generates a test pulse is send on a NIM output loaded with 50
Q. This test pulse can be moved around by software with reference to the L1 trigger. The test pulse wire is taped across
the PCB traces of the analog channels, which capacitively couples with the edges of the pulse. Thus is simulates the signals
that will be in the detector. In order to verify internal and external signals, Xilinx ChipScope and Lattice Reveal were used
with corresponding JTAG programmers.

: Prototype board

|
|
test pulse | |
1
| |
lslow controlPy] | |
PC l@—Ethernet—p» 1GBit/s switch SRU <—DTC—|> CPLD l@=Saltro intf.—» SALTRO 50Q |
[—readout— | |
| |
7 Y} A R N i
T\
A A
>
Xilinx JTAG Lattice JTAG
Programmer N Programmer
Lad

Figure 40: Hardware implementation block diagram.

Due to limitations of how deep the DTC RX memory in the SRU is, and the Readout FSM, only a single jumbo Ethernet
frame per event can be readout. This is enough to readout 2-3 channels with up to 1024 samples. Or 16 channels with
about 150 channels each. On fig.41 are shown 2 events, with different sampling clock (i.e. the resolution is different), each
about 975 samples long.

— — — — — ——
‘cho cho' -
140 | | | Chi] 140 | Chi
120 | o ! g 120 -
100 F . 100 |
80 | o f 1 80 |
60 | o ! . 60
40 | i H H H i 40
20k N op b P i e . L;‘F;;. .
st s P e i i
HIE 'S S N S N S (NS S NN S NS S S N U S T N S N S S (N N SN (N N SN S (O S S
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 95010001050

a) b)
Figure 41: Readout of 2 channels with: a) 20MHz sampling clock b) 10 MHz sampling clock.

26

ETIN35 - IC Project 1 Report

VIl. Conclusion

It was a nice learning experience with this project and a lot of head scratching was done. The transition to 65nm was
relatively painless and took only a couple of days, affirming the notion of reusability. Having experience and scripts from
the 130nm synthesis and place & route saved a lot of time.

| learned than having a well-documented design is a must in being successful, since the code | took over, isn't well
documented, and | spent a huge amount of time trying to figure out what it was doing.

The work on this projects will continue as my master thesis, by implementing support for 40 DTC boards readout each
with 128 channels. And also future improvements could be investigated such as power-saving and error checking.

VIIl. Literature
1. SALTRO ADC chip specification: http://www.hep.lu.se/eudet/saltro/S-ALTRO Documentation-1.pdf
2. DTC Link protocol specification:
https://twiki.cern.ch/twiki/pub/Sandbox/FanZhangSRUFiles/DTCLinkProtocolforEMCalPHOS20140311.pdf
3. UDP Command packet specification:
http://www.hep.lu.se/eudet/saltro/developdoc/SRUGbEDetectorControlSpecification14032601.pdf

27

http://www.hep.lu.se/eudet/saltro/S-ALTRO_Documentation-1.pdf
https://twiki.cern.ch/twiki/pub/Sandbox/FanZhangSRUFiles/DTCLinkProtocolforEMCalPHOS20140311.pdf
http://www.hep.lu.se/eudet/saltro/developdoc/SRUGbEDetectorControlSpecification14032601.pdf

ETIN35 - IC Project 1 Report

Appendix 1: Synthesis script

Use: source cpld synth.tcl

analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library
analyze -library

analyze -library

elaborate boardcontroller pad

WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK

WORK

-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format
-format

-format

verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog
verilog

verilog

"

./bb_rtl lib/ilvds.v";
./bb_rtl lib/olvds.v";
./bb_rtl 1lib/pll adc.v";
./bb_rtl lib/fifo dc.v";
./bb_rtl lib/ch ram.v";
./bb_rtl lib/event fifo.v";
../cpld/bitddr.v";
../cpld/dtc_tx.v";
../cpld/dtc_rx.v";
../cpld/dtcTrigDecode.v";
./cpld/dtc_cmd.v";
./cpld/dtc_top mcm.v";
../cpld/memory interface.v";
../cpld/fed build.v";
../cpld/altro if.v";
./cpld/LGFlagModule.v";
./cpld/altro_top.v";
./cpld/Mcmtop.v";

./rtl pads/boardcontroller pad.v";

-library WORK

Specify clocks & area constraints..

High Speed

create clock -period 2 -name my dtc clk dtc clk p
set clock uncertainty 0.04 my dtc clk

set fix hold my dtc_clk

Do the real synthesis.
compile -map effort high

change names -rules verilog -hierarchy

Save the stuff

write -hierarchy -format ddc -output
write -hierarchy -format verilog -output ./netlists/boardcontroller.v

./netlists/boardcontroller.ddc

write sdf ./netlists/boardcontroller.sdf
write sdc ./netlists/boardcontroller.sdc

Check the design

check design
report timing

report constraint -all violators

report area -hierarchy

28

ETIN35 - IC Project 1 Report

Appendix 2: Place and route script

Source the globals & the corners.
source ./boardcontroller.globals

Initialize the design

init design

Connect the power nets.

clearGlobalNets

globalNetConnect VDD -type tiehi -inst *
globalNetConnect GND -type tielo -inst *

globalNetConnect VDD -type pgpin -pin VDD* -inst *
globalNetConnect GND -type pgpin -pin GND* -inst *

Set the dimentions of the die.
floorPlan -site CORE -s 1200 1200 20 20 20 20

Position the board controller instance.

setObjFPlanBox Module i boardcontroller 200 200 500 500

Add Power Rings

& Slices

set sprCreatelIeRingNets {}

set sprCreatelIeRinglayers {}

set sprCreateleRingWidth 1.0

set sprCreateleRingSpacing 1.0

set sprCreateleRingOffset 1.0

set sprCreatelIeRingThreshold 1.0
set sprCreateleRingJogDistance 1.0

addRing -stacked via top layer M7

—around core -jog distance 0.4

-threshold 0.4

stacked via bottom layer Ml -layer {bottom M3 top M3 right M4 left M4} -width 2 -spacing 2 -offset 2

Add the stripes

set sprCreateleStripeNets {}

set sprCreateleStripelayers {}

set sprCreateleStripeWidth 10.0
set sprCreateleStripeSpacing 2.0
set sprCreateleStripeThreshold 1.0

addsStripe -block ring top layer limit

addsStripe -block ring top layer limit

M5
padcore ring bottom layer limit M3 -set _to set distance
padcore ring top layer limit M5 -spacing
block ring bottom layer limit M3 -width 2 -nets {GND VDD} -stacked via bottom layer Ml
-max_same layer jog length

-stacked via top layer

M4
padcore ring bottom layer limit M2 -set to set distance

-max_same layer jog length
-stacked via top layer
-merge stripes value

padcore ring top layer limit M4 -spacing 2 -merge stripes value 0.4 -direction horizontal -layer M3

-block ring bottom layer limit M2 -width 2 -nets {GND VDD} -stacked via bottom layer ML

Place standard cells
setPlaceMode -fp false -prerouteAsObs {1 2 3 4}

placeDesign
setDrawView place

Create clk tree

clockDesign -specFile ./soc/clock.ctstch -outDir clock report -fixedInstBeforeCTS

Add Fillers

addFiller -cell HS65 LH FILLERCELL4 HS65 LH FILLERCELL3 \
HS65 LH FILLERCELL2 HS65 LH FILLERCELLl -prefix fico

Add Filler IO cells

addIoFiller -cell
addIoFiller -cell
addIoFiller -cell
addIoFiller -cell
addIoFiller -cell
addIoFiller -cell
addIoFiller -cell

IOFILLERCELL64 ST SF LIN -prefix if64
IOFILLERCELL32 ST SF LIN -prefix if32
IOFILLER16 ST SF _LIN -prefix ifl16

IOFILLER8 ST SF LIN -prefix
IOFILLER4 ST SF LIN -prefix
IOFILLER2 ST SF LIN -prefix
IOFILLER] ST SF LIN -prefix

Connect VDD & GND to the pads.

if8
if4
if2
ifl

29

ETIN35 - IC Project 1 Report

sroute

—-connect { blockPin padPin padRing corePin floatingStripe } -layerChangeRange { M1 M7

blockPinTarget { nearestRingStripe nearestTarget |} -padPinPortConnect { allPort oneGeom

stripeSCpinTarget { blockring padring ring stripe ringpin blockpin }

-checkAlignedSecondaryPin 1

blockPin uselef -allowJogging 1 -crossoverViaBottomLayer M1 -allowLayerChange 1 -targetViaTopLayer M7
—-crossoverViaToplayer M7 -targetViaBottomLayer M1 -nets { GND VDD }

NanoRoute normal wires

setNanoRouteMode -quiet -timingEngine {}
setNanoRouteMode -quiet -routeWithSiPostRouteFix 0
setNanoRouteMode -quiet -routeTopRoutinglayer default
setNanoRouteMode -quiet -routeBottomRoutingLayer default
setNanoRouteMode -quiet -drouteEndIteration default
setNanoRouteMode -quiet -routeWithTimingDriven false
setNanoRouteMode -quiet -routeWithSiDriven false
routeDesign -globalDetail

sroute -noBlockPins -noPadRings -jogControl { preferWithChanges differentLayer }
fit

globalDetailRoute

Save design & netlists and other files.

saveDesign ./soc/boardcontroller.enc
saveNetlist ./netlists/boardcontroller layout.v

#write
#write

#rcout
#rcout
#rcout
#rcout

sdf -version 2.1 -interconn nooutport -view NOM ./netlists/boardcontroller layout NOM.sdf
sdf -version 2.1 -interconn nooutport -view SS ./netlists/boardcontroller layout SS.sdf

-spf ./netlists/boardcontroller ss.spf -rc_corner SS
-spef ./netlists/boardcontroller ss.spef -rc corner SS
-spf ./netlists/boardcontroller nom.spf -rc corner NOM
-spef ./netlists/boardcontroller nom.spef -rc corner NOM

30

