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Stored EM energy (definitions and interpretations)

Stored electric We and magnetic Wm energies are instrumental in the analysis of small
antennas. The stored energy is used to estimate the bandwidth [7, 22], determine physi-
cal bounds [4, 12, 21], antenna optimization [5]. Unfortunately, the stored energy is not
uniquely defined and there are many different proposals in the literature [3, 10, 17, 22]:
Fields with the difference between the energy density and the energy density of the radiated

field as proposed by Collin & Rothschild 1964 [6, 7, 20, 22], see also [16]. The main
problem is to define and evaluate the energy density of the radiated field and to perform
the integration over R3.

Currents suggested by Harrington [15] based on MoM matrices, Geyi [8] for ka � 1,
and Vandenbosch [18]. More general as a state-space representations [14]. Useful for
antenna current optimization [12] and an intuitive interpretation of the stored energy (in
the states). Problems with the time (phase) delay.

Input impedance and circuit models by Chu [4] for spherical modes and in general [10].
Also local approximations using differentiation [2, 13, 22]. Well defined stored energy for
a rational input impedance but needs all frequencies. Differentiation is a good approxi-
mation for single resonances.

Physical bounds and optimization using stored

energy expressed in the current density

Lower bounds on Q for a planar PEC rectangular plate with length ` = 10 cm and width
`/2 = 5 cm, where the antenna region is constrained to 100, 25, 15, 6% of the rectangle [5,
12]. Optimized antennas using single frequency optimization [5].
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Stored energy and Q-factor expressions based on fields, currents, and input impedance

Subtraction of the far field (FF)

Subtraction of the energy density corresponding to the
far field is common [7, 8, 22]

•Can be coordinate dependent [11, 22].

•Can be negative for large structures [10].

•Hard to generalize to lossy and dielectric media.

•Also expressed in the input reactance and far field.

Current density and state-space models

Differentiated EFIE MoM impedance matrix (vacuum)
and state-space models (dispersive media)

• Sesquilinear form in I for the stored energy (CS).

– Can be negative for large structures [10].

– Useful for antenna current optimization [5, 12].

– Vacuum case [15, 18] is identical to the subtracted
far field (FF) for coordinate independent cases [10].

•Bilinear form in I (analytic in s) for Z ′in (CB).

– Indefinite and hence minQZ′in
= 0 [13].

–QZ′in
≤ Q for small antennas [14].
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Subtraction of power density (FP)

Subtraction of the energy related to the power density
(Poynting vector) [6, 11, 16]. Use P = Re{E ×H∗}
• f (P ) = r̂·P coordinate dependent. Q differ with ka

from the subtracted far field for spherical modes [11].

• f (P ) = |P | hard to evaluate but can be generalized
to lossy and dielectric media.

Input impedance (ZB,Z ′in)

•Circuit synthesis (Brune) or state-space model (ZB)

– Rational PR input impedance (approximation).

– Energy stored in the constructed states [19] (or
lumped circuit elements [1]).

•Differentiated input impedance [22] (Z ′in)

– Easy to evaluate.

– Padé approximation with a resonance model [13].

– Inversely proportionality to the fractional band-
width (*) as Γ0 → 0 if QZ′in

> 0.

Q-factor Q and fractional bandwidth B

The Q-factor is defined by the stored energy and inversely proportional to B, i.e.,

Q =
2ωmax{We,Wm}

Pd
, B ≈ 2

Q

Γ0√
1− Γ 2

0

single self-resonance Q ≈ QZ′in
=
ω|Z ′in|
2Rin
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Stored energy and state-space models

The EFIE impedance matrix is

Z = sµrL +
1

sεr
Ci and ZI = (sµrL +

1

sεr
Ci)I = Vvin

where the matrices L and Ci depend on the frequency s = jω and
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V
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The Lorentz model

εr(s) = ε∞ +
α2

β2 + γs + δs2

gives the state-space representation [14]
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with iin = YI and yin = YI/vin. Reciprocal system (with internal symmetry
diag(1,−1,−1, 1) if V = YT, see [19].

Strip dipole in ε, µ Lorentz media

Stored energy expressions are compared
for a strip dipole in an electric and mag-
netic Lorentz medium [14]. The resulting
Q-factors are depicted.

• State-space results Qss (currents and
polarizations) agree with the circuit
synthesized values[14].

•The results from the differentiated
MoM matrices vanish at the resonance
wavelength ` ≈ 0.48λ.
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Also physical bounds using current optimization with near-field constraints for antennas
in lossy and temporally dispersive media [9].
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