

STORED ELECTROMAGNETIC ENERGY

Mats Gustafsson

Swedish Foundation for

STRATEGIC RESEARCH

Colombi (Ericsson).

ollaboration with: Marius Cismasu (LU, Eresson), Doruk Tayli (LU), Casimir Ehrenborg LU), Lars Jonsson (KTH), Sven Nordebo (LnU), Jonas Fridén (Ericsson), Davide

Electrical and Information Technology, Lund University, Lund, Sweden. mats.gustafsson@eit.lth.se, www.eit.lth.se/staff/mats.gustafsson

Stored EM energy (definitions and interpretations)

Stored electric $W_{\rm e}$ and magnetic $W_{\rm m}$ energies are instrumental in the analysis of small antennas. The stored energy is used to estimate the bandwidth [7, 22], determine physical bounds [4, 12, 21], antenna optimization [5]. Unfortunately, the stored energy is not uniquely defined and there are many different proposals in the literature [3, 10, 17, 22]: **Fields** with the difference between the energy density and the energy density of the radiated field as proposed by Collin & Rothschild 1964 [6, 7, 20, 22], see also [16]. The main problem is to define and evaluate the energy density of the radiated field and to perform the integration over \mathbb{R}^3 .

Currents suggested by Harrington [15] based on MoM matrices, Geyi [8] for $ka \ll 1$, and Vandenbosch [18]. More general as a state-space representations [14]. Useful for antenna current optimization [12] and an intuitive interpretation of the stored energy (in the states). Problems with the time (phase) delay.

Physical bounds and optimization using stored energy expressed in the current density

Lower bounds on Q for a planar PEC rectangular plate with length $\ell = 10 \text{ cm}$ and width $\ell/2 = 5 \,\mathrm{cm}$, where the antenna region is constrained to 100, 25, 15, 6% of the rectangle [5, 12]. Optimized antennas using single frequency optimization [5].

Input impedance and circuit models by Chu [4] for spherical modes and in general [10]. Also local approximations using differentiation [2, 13, 22]. Well defined stored energy for a rational input impedance but needs all frequencies. Differentiation is a good approximation for single resonances.

Stored energy and Q-factor expressions based on fields, currents, and input impedance

Subtraction of the far field (FF)

- Subtraction of the energy density corresponding to the far field is common [7, 8, 22]
- Can be coordinate dependent [11, 22].
- Can be negative for large structures [10].
- Hard to generalize to lossy and dielectric media.
- Also expressed in the input reactance and far field.

Current density and state-space models

Differentiated EFIE MoM impedance matrix (vacuum) and state-space models (dispersive media)

Subtraction of power density (FP)

- Subtraction of the energy related to the power density (Poynting vector) [6, 11, 16]. Use $\boldsymbol{P} = \operatorname{Re}\{\boldsymbol{E} \times \boldsymbol{H}^*\}$ • $f(\mathbf{P}) = \hat{\mathbf{r}} \cdot \mathbf{P}$ coordinate dependent. Q differ with ka
- from the subtracted far field for spherical modes [11].
- $f(\mathbf{P}) = |\mathbf{P}|$ hard to evaluate but can be generalized to lossy and dielectric media.

Input impedance (ZB, Z'_{in})

• Circuit synthesis (Brune) or state-space model (ZB)

- Sesquilinear form in \mathbf{I} for the stored energy (CS).
- -Can be negative for large structures [10].
- -Useful for antenna current optimization [5, 12].
- -Vacuum case [15, 18] is identical to the subtracted far field (FF) for coordinate independent cases [10].
- Bilinear form in **I** (analytic in s) for Z'_{in} (CB).
- -Indefinite and hence $\min Q_{Z'_{in}} = 0$ [13].
- $-Q_{\mathbf{Z}'_{\mathrm{in}}} \leq Q$ for small antennas [14].

- -Rational PR input impedance (approximation).
- -Energy stored in the constructed states [19] (or lumped circuit elements [1]).
- Differentiated input impedance [22] (Z'_{in})
 - -Easy to evaluate.
 - -Padé approximation with a resonance model [13].
- -Inversely proportionality to the fractional bandwidth (*) as $\Gamma_0 \to 0$ if $Q_{Z'_{in}} > 0$.

Q-factor Q and fractional bandwidth B

The Q-factor is defined by the stored energy and inversely proportional to B, *i.e.*, $Q = \frac{2\omega \max\{W_{\rm e}, W_{\rm m}\}}{P_{\rm d}}, \ B \approx \frac{2}{Q} \frac{\Gamma_0}{\sqrt{1 - \Gamma_0^2}} \text{ single self-resonance } Q \approx Q_{\rm Z'_{in}} = \frac{\omega |Z'_{\rm in}|}{2R_{\rm in}} \quad (*)$

Stored energy and state-space models

The EFIE impedance matrix is

Strip dipole in ϵ, μ Lorentz media

Stored energy expressions are compared 10^3 _{10^3} for a strip dipole in an electric and magnetic Lorentz medium [14]. The resulting Q-factors are depicted. 10^{2}

- State-space results Q_{ss} (currents and polarizations) agree with the circuit synthesized values [14].
- The results from the differentiated MoM matrices vanish at the resonance

$$\mathbf{Z} = s\mu_{\mathrm{r}}\mathbf{L} + \frac{1}{s\epsilon_{\mathrm{r}}}\mathbf{C}_{\mathrm{i}}$$
 and $\mathbf{Z}\mathbf{I} = (s\mu_{\mathrm{r}}\mathbf{L} + \frac{1}{s\epsilon_{\mathrm{r}}}\mathbf{C}_{\mathrm{i}})\mathbf{I} = \mathbf{V}v_{\mathrm{in}}$

where the matrices **L** and **C**_i depend on the frequency $s = j\omega$ and

$$L_{mn} = \int_{V} \int_{V} \boldsymbol{\psi}_{m1} \cdot \boldsymbol{\psi}_{n2} \frac{\mathrm{e}^{-snc_{0}R_{12}}}{4\pi R_{12}} \,\mathrm{dV}_{1} \,\mathrm{dV}_{2}, \quad C_{\mathrm{i}mn} = \int_{V} \int_{V} \nabla_{1} \cdot \boldsymbol{\psi}_{m1} \nabla_{2} \cdot \boldsymbol{\psi}_{n2} \frac{\mathrm{e}^{-snc_{0}R_{12}}}{4\pi R_{12}} \,\mathrm{dV}_{1} \,\mathrm{dV}_{2},$$

The Lorentz model

$$\epsilon_{
m r}(s) = \epsilon_{\infty} + rac{lpha^2}{eta^2 + \gamma s + \delta s^2}$$

gives the state-space representation [14]

$$s \begin{pmatrix} \mu_{\mathbf{r}} \mathbf{L} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \epsilon_{\infty} \mathbf{C} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{C}_{\mathbf{i}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \beta^{2} \delta \mathbf{C}_{\mathbf{i}} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \\ \mathbf{P} \\ \dot{\mathbf{P}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} - \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & -\alpha \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \beta^{2} \mathbf{C}_{\mathbf{i}} \\ \mathbf{0} & \alpha \mathbf{1} & -\beta^{2} \mathbf{C}_{\mathbf{i}} & -\gamma \beta^{2} \mathbf{C}_{\mathbf{i}} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{U} \\ \mathbf{P} \\ \dot{\mathbf{P}} \end{pmatrix} + \begin{pmatrix} \mathbf{V} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} v_{\mathrm{in}}$$
with $i_{\mathrm{in}} = \mathbf{Y} \mathbf{I}$ and $y_{\mathrm{in}} = \mathbf{Y} \mathbf{I} / v_{\mathrm{in}}$. Reciprocal system (with internal symmetry diag $(1, -1, -1, 1)$ if $\mathbf{V} = \mathbf{Y}^{\mathrm{T}}$, see [19].

wavelength $\ell \approx$	$= 0.48\lambda$.	

						ĭ.
L	I		I	I		
0.1	0.2	0.3	0.4	0.5	0.6	0.7

Also physical bounds using current optimization with near-field constraints for antennas in lossy and temporally dispersive media [9].

[1] O. Brune. "Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency". In: MIT J. Math. Phys. 10 (1931), pp. 191–236.
[2] M. Capek et al. "The Measurable Q Factor and Observable Energies of Radiating Structures". In: IEEE Trans. Antennas Propagat. 62.1 (2014), pp. 311–318.
[3] M. Capek et al. "A scheme for stored energy evaluation and a comparison with contemporary techniques". In: arXiv preprint arXiv:1403.0572 (2014).
[4] L. J. Chu. "Physical Limitations of Omnidirectional Antennas". In: J. Appl. Phys. 19 (1948), pp. 1163–1175.
[5] M. Cismasu and M. Gustafsson. "Antenna Bandwidth Optimization with Single Frequency Simulation". In: IEEE Trans. Antennas Propagat. 62.3 (2014), pp. 1304–1311.
[6] R. E. Collin and S. Rothschild. "Evaluation of Antenna Q". In: IEEE Trans. Antennas Propagat. 12 (Jan. 1964), pp. 23–27.
[7] R. L. Fante. "Quality Factor of General Antennas". In: IEEE Trans. Antennas Propagat. 17.2 (Mar. 1969), pp. 151–155.
[8] W. Geyi. "A method for the evaluation of small antenna Q". In: IEEE Trans. Antennas Propagat. 51.8 (2003), pp. 2124–2129.
[9] M. Gustafsson, J. Friden, and D. Colombi. "Antenna Current Optimization for Lossy Media with Near Field Constraints". In: Antennas and Wireless Propagation Letters, IEEE (2015). (in press), pp. 1–1.
[10] M. Gustafsson and B. L. G. Jonsson. "Antenna Q and stored energy expressed in the fields, currents, and input impedance". In: IEEE Trans. Antennas Propagat. 63.1 (2015), pp. 240–249.
[11] M. Gustafsson and B. L. G. Jonsson. "Stored Electromagnetic Energy and Antenna Q". In: Progress In Electromagnetics Research (PIER) 150 (2015), pp. 13–27.
[12] M. Gustafsson and S. Nordebo. "Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex Optimization". In: IEEE Trans. Antennas Propagat. 61.3 (2013), pp. 1109–1118.
[13] M. Gustafsson and S. Nordebo. "Bandwidth, Q factor, and resonance models of antennas". In: Progress in Electromagnetics Research 62 (2006), pp. 1–20.
[14] M. Gustafsson, D. Tayli, and M. Cismasu. Q factors for antennas in dispersive media. Tech. rep. LUTEDX/(TEAT-7232)/1-24/(2014). http://www.eit.lth.se. Department of Electrical and Information Technology, P.O. Box 118, S-221 00 Lund, Sweden: Lund University, 2014.
[15] R. Harrington. "Characteristic modes for antennas and scatterers". English. In: Numerical and Asymptotic Techniques in Electromagnetics. Ed. by R. Mittra. Vol. 3. Topics in Applied Physics. Springer Berlin Heidelberg, 1975, pp. 51–87.
[16] G. Kaiser. "Electromagnetic inertia, reactive energy and energy flow velocity". In: J. Phys. A: Math. Theor. 44.34 (2011), p. 345206.
[17] S. M. Mikki and Y. M. Antar. "A theory of antenna electromagnetic near field Part I". In: IEEE Trans. Antennas Propagat. 59.12 (2011), pp. 4691–4705.
[18] G. A. E. Vandenbosch. "Reactive Energies, Impedance, and Q Factor of Radiating Structures". In: IEEE Trans. Antennas Propagat. 58.4 (2010), pp. 1112–1127.
[19] J. C. Willems. "Dissipative dynamical systems part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393.
[20] A. D. Yaghjian. "Internal energy, Q-energy, Poynting's theorem, and the stress dyadic in dispersive material". In: IEEE Trans. Antennas Propagat. 55.6 (2007), pp. 1495–1505.
[21] A. D. Yaghjian, M. Gustafsson, and B. L. G Jonsson. "Minimum Q for Lossy and Lossless Electrically Small Dipole Antennas". In: Progress In Electromagnetics Research 143 (2013), pp. 641–673.
[22] A. D. Yaghijan and S. R. Best, "Impedance, Bandwidth, and Q of Antennas". In: IEEE Trans. Antennas Propagat, 53,4 (2005), pp. 1298–1324.