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Antenna challenges and limitations

Often good to have antennas with all or
some of

I low Q-factor (high bandwidth)

I low losses

I high directivity

I high capacity (diversity)

I matching

Many approaches to determine physical
bounds. Most general approaches by
optimization over antenna current density.

What can be said about the trade-off bet-
ween different parameters?
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Trade-off between bandwidth and efficiency

Trade-off between bandwidth and efficiency can be analyzed by the optimization
problems

maximize IHRrI

subject to IHXmI ≤ 2P̄w

IHXeI ≤ 2P̄w

IHRΩI ≤ 2P̄Ω.

(T)

maximize IHRrI

subject to IHXmI = 2P̄w

IHXeI = 2P̄w

IHRΩI ≤ 2P̄Ω.

(S)

Self-resonance is enforced by equal electric and magnetic stored energies. Optimizing
over the current I (N × 1-matrix) with given positive semidefinite N ×N matrices Rr

(radiated power), Xm (stored magnetic energy), Xe (stored electric energy),RΩ

(ohmic losses).

These QCQPs are not convex so we need to reformulate them in convex (or some other
solvable) form.
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Pareto in α and relaxation in ν

Start with by forming linear combinations between the constraints as Pareto in α and
relaxation in ν

maximizeI IHRrI

subject to IHXανI ≤ 2(αP̄w + (1− α)P̄Ω),
(R)

where α ∈ [0, 1], ν ∈ [0, 1] (or ν ∈ R) and

Xαν = ανXe + α(1− ν)Xm + (1− α)RΩ

This is a Rayleigh quotient with the solution (for Xαν � 0 and fixed α)

maximizeν min eig(Xαν ,Rr), (E)

where eig denotes the set of eigenvalues {γn} which solves XανIn = γnRrIn.

The solution IHRrI to (R) (and (15)) is greater than or equal to the corresponding
solutions of (T) and (S).
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Line search, duality gap, and derivative

The relaxed problem (R) is concave in ν (for fixed α) and solved by a line search over
ν. Derivative of the smallest eigenvalue (assuming non-degenerate eigenvalues)

γ′ =
dγ

dν
=

IHX′ανI
IHRrI

= −α IHXI

IHRrI


< 0 if inductive IHXI > 0

= 0 if resonant IHXI = 0

> 0 if capacitive IHXI < 0

Degenerate eigenvalues are connected to geometrical symmetries and we can
decompose the problem into orthogonal subspaces with non-degenerate eigenvalues.
A few different cases, consider e.g., the case with the optimal ν in the inner region.
Then γ′ = 0 hence IHXI = 0 implying that the constraints in (S) are satisfied and
hence there is no duality gap.
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Pareto front η vs Qrad = Q/η

externally tuned
High cost in Q for ηub.
self-resonant
Low cost in Q for ηres

ub

Often simpler to use the
dissipation factor

δ =
Ploss

Prad
= η−1 − 1
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Self-resonance has a high cost for efficiency.
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Pareto front δ = Ploss/Prad vs Qrad = Q/η

D minQrad from loop
current at the rim
(M-dipole) and
charges at two
edges (E-dipole).

C min δ (self-res.)
from distributed
loop current.

B Electric dipole (not
self-res.).

A min δ from
homogeneous
current density.
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Pareto curves for layered prolate spheroids

Tuned (solid) and self
resonant (dotted
curves).

I Sufficient with
surface currents for
the radiation
Q-factor [GCJ12].

I Volumetric current
densities can
reduce the
dissipation factor δ
(increased
efficiency).
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Pareto fronts for controllable regions

Similar results for cases
with controllable
currents in subregions.

ΩA: antenna region
with controllable
currents.

ΩG: ground plane with
induced currents.
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Pareto fronts for regions with inhomogeneous resistivity

Large differences
between minQrad and
min δ for structures
with inhomogeneous
resistivity.
min δ by reducing
currents in the lossy
region.
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Limiting cases

The limiting cases for the Pareto front α = 0, 1 can be solved directly. The minimum
dissipation factor results in the eigenvalue problem [Har60; JC17]

(ηub)−1 − 1 = δlb = min
I

IHRΩI

IHRrI
= min eig(RΩ,Rr).

Self resonance is enforced by adding (IHXI = 0) to the optimization problem and
solved as (see also [JC17; Pfe17; Tha18])

(ηres
ub )−1 − 1 = δres

lb = max
ν∈R

min eig(νX + RΩ,Rr).

Note that these optimization/eigenvalue problems are easy to solve. They can also be
further simplified by the factorization Rr = SHS discussed later.
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Limit of electrically small antennas

TM and TE eigenvalue problems

k3Qrad
lb,TM = min eig

∇×
(Ci,RTM) =

6π

max eig γe

, k3Qrad
lb,TE = min eig

∇·
(L,RTE) =

6π

max eig γm

are used to determine the mixed TM-TE Q-factor

Qrad
lb =

6π

k3(max eig γe + max eig γm)
.

The inductor Q-factor

Qub,L

k
= max

IH
0 LI0

IH
0 RΩI0

= max eig
∇·

(L,RΩ).

is used to express the minimal TM dissipation factor

δlb,TM =
min eig∇×(Ci,RTM)

k4 max eig∇·(L,RΩ)
=

6π

k3γQub,L
=
Qrad

lb,TM

Qub,L
.
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Normalized Q-factors for planar rectangle with sides `x and `y

Lower bound on the
dissipation factor

δlb,TM =
Qrad

lb,TM

Qub,L
.

Want Low Qrad
lb,TM and

high Qub,L.

Arrows show results
of removing material
(structure). Here, from
solid rectangles to loops
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Pareto front δ = Ploss/Prad vs Qrad = Q/η

D minQrad from loop
current at the rim
(M-dipole) and
charges at two
edges (E-dipole).

C min δ (self-res.)
from distributed
loop current.

B Electric dipole (not
self-res.).

A min δ from
homogeneous
current density.
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Computational cost

The Pareto fronts are determined by solving

maximizeν min eig(Xαν ,Rr),

which are concave in ν and 0 < α < 1 determines the Pareto front from

Xαν = ανXe + α(1− ν)Xm + (1− α)RΩ

I Need to sample α in 100-200 points for a smooth curve.

I 10-30 evaluations for maxν (bisection algorithm).

In total 104 to 105 evaluations of generalized eigenvalue problems (similar to characte-
ristic modes)

min eig(Xαν ,Rr)
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Efficient and accurate evaluation of Rr

The real-valued part of the impedance matrix with elements

Zpq = jkZ0

∫
Ω

∫
Ω
ψp(r1) ·G(r1, r2) ·ψq(r2) dS1 dS2

is decomposed by expanding the Green dyadic in regular u
(1)
α and out-going u

(4)
α

spherical vector waves

G(r1, r2) = −jk
∑
α

u(1)
α (kr<)u(4)

α (kr>),

where α(τ, σ,m, l), r< = r1 and r> = r2 if |r1| < |r2| and so on. Factorization
Rr = STS = SHS, where S has the elements

Sαp = kZ
1/2
0

∫
Ω
ψp(r) · u(1)

α (kr) dS.

See [Tay+17] and compare with the T-matrix [Kri16], FMM [CRW93], and far-field
expansion [GN13] methods.
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Properties of R = SHS

Nψ

Nψ

=

Nα

Nψ

Nψ

Nα

I Nψ and Nα � Nψ number of basis function and spherical modes, respectively.

I Nα = 2L(L+ 2) with L ≈ dka+ 3 + 7(ka)1/3e, exponential convergence.

I Single (surface) integral (negligible computational cost).

I Rr = SHS � 0 (in theory and practice).

I Radiated field expanded in spherical modes F = SI.

I Radiated power Pr = 1
2I

HRI = 1
2 |SI|

2 = 1
2

∑
α |Fα|2.
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Computational efficiency

Factorize radiation matrix Rr = SHS to rewrite the eigenvalue problem eig(Xαν ,Rr)

XανI = λRrI = λSHSI

as
I = λX−1

ανS
HSI⇒ SI = λSX−1

ανS
HSI

Implying an Nα ×Nα eigenvalue problem

λ−1 = eig(SX−1
ανS

H)

Nψ

Nα

Nψ

Nψ Nα

Nψ

=

Nα

Nα
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Conclusions

I Trade-off between Qrad and η
I Big difference between optimal Qrad and η for

externally tuned cases.
I Smaller for self-resonant cases with a single

material (homogeneous resistivity).
I Complex trade-off for inhomogeneous

resistivity.

I Relaxation to eigenvalue problems.

I Factorization Rr = SHS for computational
efficiency.
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