

Trade-off between Q-factor and efficiency for small antennas

Mats Gustafsson, Miloslav Capek and Kurt Schab Based on 'Trade-off Between Antenna Efficiency and Q-Factor' (TEAT-7260)

Electrical and Information Technology, Lund University, Sweden Dept. of Electromagnetic Field, Czech Technical University, Prague, Czech Republic Dept. of Electrical Engineering, Santa Clara University, Santa Clara, USA

Antenna challenges and limitations

Often good to have antennas with all or some of

- low Q-factor (high bandwidth)
- Iow losses
- high directivity
- high capacity (diversity)
- matching

Many approaches to determine physical bounds. Most general approaches by optimization over antenna current density.

What can be said about the trade-off between different parameters?

Trade-off between bandwidth and efficiency can be analyzed by the optimization problems

Self-resonance is enforced by equal electric and magnetic stored energies. Optimizing over the current I ($N \times 1$ -matrix) with given positive semidefinite $N \times N$ matrices \mathbf{R}_r (radiated power), \mathbf{X}_m (stored magnetic energy), \mathbf{X}_e (stored electric energy), \mathbf{R}_{Ω} (ohmic losses).

These QCQPs are not convex so we need to reformulate them in convex (or some other solvable) form.

Mats Gustafsson, Lund University, Sweden, 3

Start with by forming linear combinations between the constraints as Pareto in α and relaxation in ν

$$\begin{array}{l} \max i \mathbf{I}^{\mathbf{H}} \mathbf{R}_{\mathbf{r}} \mathbf{I} \\ \text{subject to} \quad \mathbf{I}^{\mathbf{H}} \mathbf{X}_{\alpha \nu} \mathbf{I} \leq 2(\alpha \bar{P}_{w} + (1 - \alpha) \bar{P}_{\Omega}), \end{array} \tag{R} \\ \text{where } \alpha \in [0, 1], \ \nu \in [0, 1] \ (\text{or } \nu \in \mathbb{R}) \text{ and} \\ \mathbf{X}_{\alpha \nu} = \alpha \nu \mathbf{X}_{\alpha} + \alpha (1 - \nu) \mathbf{X}_{m} + (1 - \alpha) \mathbf{R}_{\Omega} \end{aligned}$$

$$-\alpha \nu = -\alpha \nu = -6 + \alpha (-2) +$$

This is a Rayleigh quotient with the solution (for $\mathbf{X}_{\alpha\nu} \succeq \mathbf{0}$ and fixed α)

$$maximize_{\nu} \min \operatorname{eig}(\mathbf{X}_{\alpha\nu}, \mathbf{R}_{r}), \tag{E}$$

where eig denotes the set of eigenvalues $\{\gamma_n\}$ which solves $\mathbf{X}_{\alpha\nu}\mathbf{I}_n = \gamma_n \mathbf{R}_r \mathbf{I}_n$.

The solution $\mathbf{I}^{H}\mathbf{R}_{r}\mathbf{I}$ to (R) (and (15)) is greater than or equal to the corresponding solutions of (T) and (S).

The relaxed problem (R) is concave in ν (for fixed α) and solved by a line search over ν . Derivative of the smallest eigenvalue (assuming non-degenerate eigenvalues)

$$\gamma' = \frac{\mathrm{d}\gamma}{\mathrm{d}\nu} = \frac{\mathbf{I}^{\mathsf{H}}\mathbf{X}_{\alpha\nu}'\mathbf{I}}{\mathbf{I}^{\mathsf{H}}\mathbf{R}_{\mathrm{r}}\mathbf{I}} = -\alpha \frac{\mathbf{I}^{\mathsf{H}}\mathbf{X}\mathbf{I}}{\mathbf{I}^{\mathsf{H}}\mathbf{R}_{\mathrm{r}}\mathbf{I}} \begin{cases} < 0 & \text{if inductive } \mathbf{I}^{\mathsf{H}}\mathbf{X}\mathbf{I} > 0 \\ = 0 & \text{if resonant } \mathbf{I}^{\mathsf{H}}\mathbf{X}\mathbf{I} = 0 \\ > 0 & \text{if capacitive } \mathbf{I}^{\mathsf{H}}\mathbf{X}\mathbf{I} < 0 \end{cases}$$

Degenerate eigenvalues are connected to geometrical symmetries and we can decompose the problem into orthogonal subspaces with non-degenerate eigenvalues. A few different cases, consider *e.g.*, the case with the optimal ν in the inner region. Then $\gamma' = 0$ hence $\mathbf{I}^{\mathsf{H}} \mathbf{X} \mathbf{I} = 0$ implying that the constraints in (S) are satisfied and hence there is no duality gap.

Pareto front η vs $Q^{\rm rad} = Q/\eta$

externally tuned High cost in Q for η_{ub} . self-resonant Low cost in Q for η_{ub}^{res}

Often simpler to use the dissipation factor

$$\delta = \frac{P_{\rm loss}}{P_{\rm rad}} = \eta^{-1} - 1$$

Self-resonance has a high cost for efficiency.

Pareto front $\delta = P_{\rm loss}/P_{\rm rad}$ vs $Q^{\rm rad} = Q/\eta$

- D min Q^{rad} from loop current at the rim (M-dipole) and charges at two edges (E-dipole).
- C min δ (self-res.) from distributed loop current.
- B Electric dipole (not self-res.).

A $\min \delta$ from homogeneous current density.

Pareto curves for layered prolate spheroids

Tuned (solid) and self resonant (dotted curves).

- Sufficient with surface currents for the radiation Q-factor [GCJ12].
- Volumetric current densities can reduce the dissipation factor δ (increased efficiency).

Pareto fronts for controllable regions

Similar results for cases with controllable currents in subregions.

- $\Omega_{\rm A}$: antenna region with controllable currents.
- $\Omega_{\rm G}$: ground plane with induced currents.

Pareto fronts for regions with inhomogeneous resistivity

Large differences between min $Q^{\rm rad}$ and min δ for structures with inhomogeneous resistivity. min δ by reducing currents in the lossy region.

The limiting cases for the Pareto front $\alpha = 0, 1$ can be solved directly. The minimum dissipation factor results in the eigenvalue problem [Har60; JC17]

$$(\eta_{\rm ub})^{-1} - 1 = \delta_{\rm lb} = \min_{\mathbf{I}} \frac{\mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I}}{\mathbf{I}^{\mathsf{H}} \mathbf{R}_{\rm r} \mathbf{I}} = \min \operatorname{eig}(\mathbf{R}_{\Omega}, \mathbf{R}_{\rm r}).$$

Self resonance is enforced by adding $(\mathbf{I}^{\mathsf{H}}\mathbf{X}\mathbf{I}=0)$ to the optimization problem and solved as (see also [JC17; Pfe17; Tha18])

$$(\eta_{\mathrm{ub}}^{\mathrm{res}})^{-1} - 1 = \delta_{\mathrm{lb}}^{\mathrm{res}} = \max_{\nu \in \mathbb{R}} \min \operatorname{eig}(\nu \mathbf{X} + \mathbf{R}_{\Omega}, \mathbf{R}_{\mathrm{r}}).$$

Note that these optimization/eigenvalue problems are easy to solve. They can also be further simplified by the factorization $\mathbf{R}_r = \mathbf{S}^{\mathsf{H}}\mathbf{S}$ discussed later.

Limit of electrically small antennas

TM and TE eigenvalue problems

$$k^{3}Q_{\rm lb,TM}^{\rm rad} = \min \mathop{\rm eig}_{\nabla\times}(\mathbf{C}_{\rm i}, \mathbf{R}_{\rm TM}) = \frac{6\pi}{\max \mathop{\rm eig}\nolimits \boldsymbol{\gamma}_{\rm e}}, \quad k^{3}Q_{\rm lb,TE}^{\rm rad} = \min \mathop{\rm eig}_{\nabla\cdot}(\mathbf{L}, \mathbf{R}_{\rm TE}) = \frac{6\pi}{\max \mathop{\rm eig}\nolimits \boldsymbol{\gamma}_{\rm m}}$$

are used to determine the mixed TM-TE Q-factor

$$Q_{
m lb}^{
m rad} = rac{6\pi}{k^3(\max \operatorname{eig} oldsymbol{\gamma}_{
m e} + \max \operatorname{eig} oldsymbol{\gamma}_{
m m})}.$$

The inductor Q-factor

$$\frac{Q_{\text{ub,L}}}{k} = \max \frac{\mathbf{I}_0^{\mathsf{H}} \mathbf{L} \mathbf{I}_0}{\mathbf{I}_0^{\mathsf{H}} \mathbf{R}_\Omega \mathbf{I}_0} = \max \mathop{\text{eig}}_{\nabla} (\mathbf{L}, \mathbf{R}_\Omega).$$

is used to express the minimal TM dissipation factor

$$\delta_{\rm lb,TM} = \frac{\min \operatorname{eig}_{\nabla \times} (\mathbf{C}_{\rm i}, \mathbf{R}_{\rm TM})}{k^4 \max \operatorname{eig}_{\nabla \cdot} (\mathbf{L}, \mathbf{R}_{\Omega})} = \frac{6\pi}{k^3 \gamma Q_{\rm ub,L}} = \frac{Q_{\rm lb,TM}^{\rm rad}}{Q_{\rm ub,L}}$$

Normalized Q-factors for planar rectangle with sides ℓ_x and ℓ_y

Lower bound on the dissipation factor

 $\delta_{\rm lb,TM} = \frac{Q_{\rm lb,TM}^{\rm rad}}{Q_{\rm ub,L}}.$ Want Low $Q_{\rm lb,TM}^{\rm rad}$ and high $Q_{\rm ub,L}.$

Arrows show results of removing material (structure). Here, from solid rectangles to loops and Meanderlines.

Pareto front $\delta = P_{\rm loss}/P_{\rm rad}$ vs $Q^{\rm rad} = Q/\eta$

- D min Q^{rad} from loop current at the rim (M-dipole) and charges at two edges (E-dipole).
- C min δ (self-res.) from distributed loop current.
- B Electric dipole (not self-res.).

A $\min \delta$ from homogeneous current density.

The Pareto fronts are determined by solving

maximize_{ν} min eig($\mathbf{X}_{\alpha\nu}, \mathbf{R}_{r}$),

which are concave in ν and $0<\alpha<1$ determines the Pareto front from

$$\mathbf{X}_{\alpha\nu} = \alpha\nu\mathbf{X}_{e} + \alpha(1-\nu)\mathbf{X}_{m} + (1-\alpha)\mathbf{R}_{\Omega}$$

- \blacktriangleright Need to sample α in 100-200 points for a smooth curve.
- ▶ 10-30 evaluations for \max_{ν} (bisection algorithm).

In total $10^4~{\rm to}~10^5$ evaluations of generalized eigenvalue problems (similar to characteristic modes)

 $\min \operatorname{eig}(\mathbf{X}_{\alpha\nu}, \mathbf{R}_r)$

Efficient and accurate evaluation of \mathbf{R}_{r}

The real-valued part of the impedance matrix with elements

$$Z_{pq} = jkZ_0 \int_{\Omega} \int_{\Omega} \psi_p(\boldsymbol{r}_1) \cdot \mathbf{G}(\boldsymbol{r}_1, \boldsymbol{r}_2) \cdot \psi_q(\boldsymbol{r}_2) \, \mathrm{dS}_1 \, \mathrm{dS}_2$$

is decomposed by expanding the Green dyadic in regular $u_{lpha}^{(1)}$ and out-going $u_{lpha}^{(4)}$ spherical vector waves

$$\mathbf{G}(oldsymbol{r}_1,oldsymbol{r}_2) = -\mathrm{j}k\sum_lphaoldsymbol{u}_lpha^{(1)}(koldsymbol{r}_<)oldsymbol{u}_lpha^{(4)}(koldsymbol{r}_>),$$

where $\alpha(\tau, \sigma, m, l)$, $\boldsymbol{r}_{<} = \boldsymbol{r}_{1}$ and $\boldsymbol{r}_{>} = \boldsymbol{r}_{2}$ if $|\boldsymbol{r}_{1}| < |\boldsymbol{r}_{2}|$ and so on. Factorization $\mathbf{R}_{r} = \mathbf{S}^{\mathsf{T}}\mathbf{S} = \mathbf{S}^{\mathsf{H}}\mathbf{S}$, where \mathbf{S} has the elements

$$S_{\alpha p} = k Z_0^{1/2} \int_{\Omega} \boldsymbol{\psi}_p(\boldsymbol{r}) \cdot \boldsymbol{u}_{\alpha}^{(1)}(k \boldsymbol{r}) \, \mathrm{dS}.$$

See [Tay+17] and compare with the T-matrix [Kri16], FMM [CRW93], and far-field expansion [GN13] methods.

Properties of $\mathbf{R} = \mathbf{S}^{\mathsf{H}}\mathbf{S}$

- $\blacktriangleright~N_\psi$ and $N_\alpha \ll N_\psi$ number of basis function and spherical modes, respectively.
- $N_{\alpha} = 2L(L+2)$ with $L \approx \lceil ka + 3 + 7(ka)^{1/3} \rceil$, exponential convergence.
- Single (surface) integral (negligible computational cost).
- $\mathbf{R}_{\mathrm{r}} = \mathbf{S}^{\mathsf{H}}\mathbf{S} \succeq \mathbf{0}$ (in theory and practice).
- Radiated field expanded in spherical modes $\mathbf{F} = \mathbf{SI}$.
- ► Radiated power $P_r = \frac{1}{2} \mathbf{I}^{\mathsf{H}} \mathbf{R} \mathbf{I} = \frac{1}{2} |\mathbf{S} \mathbf{I}|^2 = \frac{1}{2} \sum_{\alpha} |F_{\alpha}|^2$.

Computational efficiency

Factorize radiation matrix $\mathbf{R}_r = \mathbf{S}^{\mathsf{H}}\mathbf{S}$ to rewrite the eigenvalue problem $\operatorname{eig}(\mathbf{X}_{\alpha\nu}, \mathbf{R}_r)$

$$\mathbf{X}_{\alpha\nu}\mathbf{I} = \lambda\mathbf{R}_{\mathrm{r}}\mathbf{I} = \lambda\mathbf{S}^{\mathsf{H}}\mathbf{S}\mathbf{I}$$

as

$$\mathbf{I} = \lambda \mathbf{X}_{\alpha\nu}^{-1} \mathbf{S}^{\mathsf{H}} \mathbf{S} \mathbf{I} \Rightarrow \mathbf{S} \mathbf{I} = \lambda \mathbf{S} \mathbf{X}_{\alpha\nu}^{-1} \mathbf{S}^{\mathsf{H}} \mathbf{S} \mathbf{I}$$

Implying an $N_{\alpha} \times N_{\alpha}$ eigenvalue problem

$$\lambda^{-1} = \operatorname{eig}(\mathbf{S}\mathbf{X}_{\alpha\nu}^{-1}\mathbf{S}^{\mathsf{H}})$$

Conclusions

- \blacktriangleright Trade-off between Q^{rad} and η
 - \blacktriangleright Big difference between optimal $Q^{\rm rad}$ and η for externally tuned cases.
 - Smaller for self-resonant cases with a single material (homogeneous resistivity).
 - Complex trade-off for inhomogeneous resistivity.
- Relaxation to eigenvalue problems.
- \blacktriangleright Factorization $\mathbf{R}_{\mathrm{r}} = \mathbf{S}^{\mathsf{H}}\mathbf{S}$ for computational efficiency.

References I

- [CHE12] M. Capek, P. Hazdra, and J. Eichler. "A method for the evaluation of radiation Q based on modal approach". IEEE Trans. Antennas Propag. 60.10 (2012), pp. 4556–4567.
- [CRW93] R. Coifman, V. Rokhlin, and S. Wandzura. "The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription". IEEE Antennas Propag. Mag. 35.3 (1993), pp. 7–12.
- [CW15] Y. Chen and C.-F. Wang. Characteristic Modes: Theory and Applications in Antenna Engineering. John Wiley & Sons, 2015.
- [GCJ12] M. Gustafsson, M. Cismasu, and B. L. G. Jonsson. "Physical bounds and optimal currents on antennas". IEEE Trans. Antennas Propag. 60.6 (2012), pp. 2672–2681.
- [GN06] M. Gustafsson and S. Nordebo. "Characterization of MIMO antennas using spherical vector waves". IEEE Trans. Antennas Propag. 54.9 (2006), pp. 2679–2682.
- [GN13] M. Gustafsson and S. Nordebo. "Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex Optimization". IEEE Trans. Antennas Propag. 61.3 (2013), pp. 1109–1118.
- [Gus+16] M. Gustafsson, D. Tayli, C. Ehrenborg, M. Cismasu, and S. Nordebo. "Antenna current optimization using MATLAB and CVX". FERMAT 15.5 (2016), pp. 1–29.
- [Har60] R. F. Harrington. "Effect of Antenna Size on Gain, Bandwidth and Efficiency". Journal of Research of the National Bureau of Standards – D. Radio Propagation 64D (1960), pp. 1–12.
- [HM71] R. F. Harrington and J. R. Mautz. "Theory of characteristic modes for conducting bodies". IEEE Trans. Antennas Propag. 19.5 (1971), pp. 622–628.
- [HM72] R. F. Harrington and J. R. Mautz. "Control of radar scattering by reactive loading". IEEE Trans. Antennas Propag. 20.4 (1972), pp. 446–454.
- [JC17] L Jelinek and M Capek. "Optimal Currents on Arbitrarily Shaped Surfaces". IEEE Trans. Antennas Propag. 65.1 (2017), pp. 329-341.
- [Kri16] G. Kristensson. Scattering of Electromagnetic Waves by Obstacles. SciTech Publishing, an imprint of the IET, 2016.
- [Pfe17] C. Pfeiffer. "Fundamental Efficiency Limits for Small Metallic Antennas". IEEE Trans. Antennas Propag. 65.4 (2017), pp. 1642–1650.
- [Tay+17] D. Tayli, M. Capek, L. Akrou, V. Losenicky, L. Jelinek, and M. Gustafsson. Accurate and Efficient Evaluation of Characteristic Modes. Tech. rep. LUTEDX/(TEAT-7258)/1–22/(2017). Lund University, 2017.
- [Tha18] H. L. Thal. "Radiation efficiency limits for elementary antenna shapes". IEEE Trans. Antennas Propag. 99 (2018).
- [VCF10] J. Volakis, C. C. Chen, and K. Fujimoto. Small Antennas: Miniaturization Techniques & Applications. McGraw-Hill, 2010.