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Characteristic modes
I Introduced more than 50 years ago [GT71; HM71] (and ....)

I Partly motivated by generalizing good properties from the Mie
series (spherical waves) to arbitrary shaped objects

I Popular in antenna design [CF+07] and evaluated using

I MoM (here EFIE) impedance matrix, Z = R + jX,
formulation [HM71]

XIn = λnRIn ⇔ ZIn = (1 + jλn)RIn = −t−1n RIn

I Spherical-wave scattering with transition matrices
Tfn = tn fn [GT71; Gus+22a] used in MoM, FEM

I Plane-wave scattering with scattering dyadics∫
S(r̂, r̂′) · F n(r̂′) dΩ = tnF n(r̂) used in MoM, FEM, and

FDTD [Cap+23]

M. Gustafsson et al. “Unified theory of characteristic modes: Part I–Fundamentals”. IEEE Trans. Antennas Propag.
70.12 (2022), pp. 11801–11813
M. Capek et al. “Characteristic Mode Decomposition Using the Scattering Dyadic in Arbitrary Full-Wave Solvers”.
IEEE Trans. Antennas Propag. 71.1 (2023), pp. 830–839
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Equivalent representations for lossless objects
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(c)

I scattering matrix S eigenvalues sn = 1 + 2tn with sn = ejφn

I transition matrix T = (S− 1)/2 eigenvalues tn with αn = arg(tn) ∈ [π/2, 3π/2]

I characteristic numbers λn = − Im{tn}
Re{tn} , φn = 2 arctan(λ−1n ), αn = π− arctan(λn)

I Modal significance |tn| = 1√
1+λ2n

Many equivalent representations for CM
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Antenna ground planes and substructures
I Common to design antennas close to (or in direct contact)

with a ground plane (or proximity object), e.g., patch and
mobile phone antennas

I Assume a design region (ΩA or Ωc) and a ground plane
(ΩG, Ω0 or Ωu)

I Excitation Vc in the antenna region and induced currents
I0 on the ground plane[

Zcc Zc0

Z0c Z00

] [
I0
Ic

]
=

[
0
Vc

]
I Elimination of the induced currents (block inversion, Schur

complement) I0 = −Z−100 Z0cIc, e.g.,

I Numerical Green’s function [PRSM77]
I MoM GA optimization [JRS99]
I Substructure CM [EM12]
I Physical bounds [GN13]

Is there an equivalent scattering formulation for substructure
CM?

ΩA

ΩG

Ωc
Vc

Ic
Ω0
V0 = 0
I0

Note: decompositions
based on basis function
(DoF) can require a
fine mesh to model
connected regions
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with a ground plane (or proximity object), e.g., patch and
mobile phone antennas

I Assume a design region (ΩA or Ωc) and a ground plane
(ΩG, Ω0 or Ωu)

I Excitation Vc in the antenna region and induced currents
I0 on the ground plane[

Zcc Zc0

Z0c Z00

] [
I0
Ic

]
=

[
0
Vc

]
I Elimination of the induced currents (block inversion, Schur

complement) I0 = −Z−100 Z0cIc, e.g.,
I Numerical Green’s function [PRSM77]
I MoM GA optimization [JRS99]
I Substructure CM [EM12]
I Physical bounds [GN13]
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Substructure CM
I Reduced MoM system matrix

Z̃Ic = R̃Ic + jX̃Ic = (Zcc − Zc0Z
−1
00 Z0c)Ic = Vc

I Substructure CM from the generalized eigenvalue
problem [EM12]

X̃Ĩn = λnR̃Ĩn or Z̃Ĩn = (1 + jλn)R̃Ĩn

I Natural to consider Ωc as a controllable regions, i.e., a
region for antenna design and excitation

I Ω0 is an uncontrollable background region (material), e.g.,
a ground plane without antenna ports

What is the corresponding scattering formulation for substruc-
ture CM?

ΩA

ΩG

Ωc

Vc

Ic
Ω0

V0 = 0
I0
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Scattering formulation for substructure CM
I Scattering matrices

I S0 for the background (uncontrollable region)
I S for the composite (total) structure

I Scattering based substructure CM from

San = snS0an

an are characteristic excitations (aHman = δmn) and sn
characteristic scattering eigenvalues

I The scattering eigenvalues sn are related to modal
significance |tn| and MoM substructure characteristic
eigenvalues λn = eig(X̃, R̃) as

tn =
sn − 1

2
and λn = − Im{t−1n } = j

sn + 1

sn − 1

Ω0
a f

=
S 0
a

Ωc

Ω0

a f
=
Sa

Mats Gustafsson, Lund University, Sweden, 6
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Interpretation scattering based substructure CM
I Scaling of the scattered field from the background

I Unitary scattering matrices (lossless)

San = snS0an ⇒ SH
0 San = snan

I The scattered fields can be expressed in transition matrices
(or scattering dyadics) S = 2T + 1 and S0 = 2T0 + 1

1

2
(SH

0 S− 1)an = (2TH
0 T + TH

0 + T)an = tnan

I Maximal scattering (difference between the scattered fields
of the composite object Tan and the background T0an)

|(T−T0)an|2 = aHn (TH
0 T0 + THT− 2 Re{TH

0 T})an}
= −Re{aHn (2TH

0 T+TH
0 +T)an} = −Re{tn}|an|2 = |tn|2|an|2

Ω0
a f

=
S 0
a

Ωc

Ω0

a f
=
Sa
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Proof outline

I factorizing the radiation matrix R = Re{Z} = UTU into spherical
waves [Gus+22a] with U =

[
U0 Uc

]
and setting

Ũ = Uc −U0Z
−1
00 Z0c

I reformulates the CM eigenvalue problem to

Z̃Ĩn = (1 + jλn)ŨHŨĨn ⇒ −ŨZ̃−1ŨHfn = tnfn (*)

where fn = −ŨĨn and tn = −1/(1 + jλn)
I Transition matrices of the composite object Ω and background object Ω1 are

expressed in MoM system matrices

T = −UZ−1UT = −
[
U0 Uc

] [Z00 Z0c

Zc0 Zcc

]−1 [
UT

0

UT
c

]
T0 = −U0Z

−1
00 U

T
0

I Block inversion shows that MoM matrix (*) and scattering based substructure
modes 2TH

0 T + TH
0 + T are equivalent

Mats Gustafsson, Lund University, Sweden, 8
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Numerical example

0.5 1 1.5 2 2.5
0
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f / GHz

|t n
|

impedance formulation
scattering formulation

Ω
`

w

h

d
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f / GHz

|t n
|

impedance formulation
scattering formulation

Ωu

Ωc

I (left) full structure (right) substructure

I Adapted from [EM12], ` = 120 mm, w = 60 mm, h = 15 mm, d = 30 mm

I Negligible differences for such as a sheet resistance 0.01 Ω/�
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Generalizations

Many possible generalizations:

I Embedded structures

I Cavities

I Combination with ports

a)

Ωc

Ω0

b)

Ω0
Ωc

d)

Ω0
Ωc

c)

Ωc
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Conclusions

I Scattering based formulation of substructure CM

I Physical insight
I MoM, FEM, or FDTD to compute matrix S and T
I Favorite MoM formulation, EFIE, MFIE, CFIE,

PMCHWT, Nyström
I FEM: flexible to model complex geometries and materials,

simple to use e.g., COMSOL
I Iterative formulation for large structures
I Scattering and FSS...

ΩA

ΩG

Ω2
V2

I2
Ω1
V1 = 0
I1

M. Gustafsson et al. “Unified theory of characteristic modes: Part I–Fundamentals”. IEEE Trans. Antennas Propag. 70.12 (2022), pp. 11801–11813;
M. Gustafsson et al. “Unified theory of characteristic modes: Part II–Tracking, losses, and FEM evaluation”. IEEE Trans. Antennas Propag. 70.12
(2022), pp. 11814–11824
M. Capek et al. “Characteristic Mode Decomposition Using the Scattering Dyadic in Arbitrary Full-Wave Solvers”. IEEE Trans. Antennas Propag.
71.1 (2023), pp. 830–839; J. Lundgren et al. “Iterative Calculation of Characteristic Modes Using Arbitrary Full-wave Solvers”. IEEE Antennas
Wireless Propag. Lett. 22.4 (2023), pp. 799–803
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