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Degrees of Freedom (DoF)

DoF is a metric of the number of parameters that can be adjusted
to achieve a desired level of performance

I Spatial DoF such as modes at a fixed frequency

I available channels in MIMO (multiple input multiple-output)
I sample points in antenna measurements

I Temporal DoF over a bandwidth

I capacity, information

I What does the number of degrees of freedom (NDoF) for an
object (or region) depend on?

I Different NDoFs for different applications

Rx

Tx
H

Franceschetti, Wave theory of information (2017). Bucci and Franceschetti, On the
degrees of freedom of scattered fields (1989). M. Migliore, On the role of the number
of degrees of freedom of the field in MIMO channels (2006). Kildal, Martini, and Maci,
Degrees of freedom and maximum directivity of antennas (2017), ...
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Classical approach to NDoF of EM field (half a century ago)

Spherical radiator with radius a and surface area A = 4πa2

N ≈ 2L(L+ 2) and L ≈ ka⇒ N ≈ Nsph = 2(ka)2 =
k2A

2π
=

2πA

λ2

Rectangular waveguides with number of propagating modes from the
cutoff wavenumbers (TE and TM cases)
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Approximately N ≈ 2πA/λ2 for surface area A. Is this true for other shapes?
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Weyl’s law over a century ago (1911)

I Weyl’s law describes the distributions of eigenvalues νn for the
Laplace operator −∇2un = νnun in a region Ω ⊂ Rd with Dirichlet
or Neumann boundary conditions [Wey11], see [Are+09]

I The number of eigenvalues Nd(ν) below ν is asymptotically

Nd(ν) =
wd|Ω|νd/2

(2π)d
as ν →∞

for a region Ω with volume |Ω| (in R3, area in R2, length in R1) and
with wd = πd/2/(d/2)! denoting the volume of the unit ball in Rd

I Number of positive eigenvalues for Helmholtz equation in Ω

∇2un + k2un = µnun ⇔ −∇2un = (k2 − µn)un

for a wavenumber k = 2π/λ with wavelength λ

Hermann
Weyl

1885–1955

Ω

W. Arendt et al. “Weyl’s Law: Spectral properties of the Laplacian in mathematics and physics”. Mathematical analysis of evolution, information,
and complexity (2009), pp. 1–71
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Weyl’s law over a century ago (1911)

I The number of propagating k2 > µ (scalar) modes in arbitrary shaped
waveguides is hence asymptotically

Nd(k
2) =

wd|Ω|kd
(2π)d

=
wd|Ω|
λd

I for R (lengths ` = |Ω|) and R2 (surface area A = |Ω|)

N1 ≈
k`

π
=

2`

λ
and N2 ≈

k2A

4π
=
πA

λ2

I 1D case corresponds to Nyquist (λ/2) sampling
I 2D case differs from Nyquist sampling in two orthogonal directions,

i.e., unit ball w2
1 = 4 and w2 = π

I Many applications such as black body radiation
I Times two for two polarizations in R2 (TE, TM waveguide modes)

H. Weyl
1885–1955

Ω
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Weyl’s law and radiating (open) regions

I Weyl’s law (R2) for the number of propagating modes in PEC
waveguides

N ≈ k2A

2π
=

2πA

λ2

I What about radiating structures in R3 with R2 surface?
I In contrast to waveguides, there is no clear cut-off between

propagating and evanescent waves, cf., spherical region with radius a.
I Surface area of the sphere and L ≈ ka [BI97]

NA ≈ 2(ka)2 =
k2A

2π
=

2πA

λ2

propagating modes for ka� 1 similar to Weyl’s law
I No clear transition between propagating and evanescent modes from

the expanding surface area with increasing radial distance a

Ω

Ω
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Weyl’s law and radiating (open) regions

I Weyl’s law can be interpreted locally as NDoF for radiation to
the volume outside a slightly enlarged version of Ω

N ≈ 2πA/λ2

I NDoF for communication between regions [JW08; PM00]
I For antenna systems often common to consider communication

from a region Ω to the far field. NDoF considered here
I What does these NDoF for radiating systems depend on?
I NDoF defined as the number of significant characteristic modes

(CM) |tn|2 ≥ 1 (or |λn| ≤ 1) is given by approximately [GL24]

NA

2
=

4π〈As〉
λ2

=
|As|
λ2

convex
object

=
πA

λ2

where 〈As〉 denotes the shadow area of the object

Ω
J(r)

Rx

Ω
J(r)f

Rx

Mats Gustafsson, Lund University, Sweden, 7



Weyl’s law and radiating (open) regions

I Weyl’s law can be interpreted locally as NDoF for radiation to
the volume outside a slightly enlarged version of Ω

N ≈ 2πA/λ2

I NDoF for communication between regions [JW08; PM00]

I For antenna systems often common to consider communication
from a region Ω to the far field. NDoF considered here

I What does these NDoF for radiating systems depend on?
I NDoF defined as the number of significant characteristic modes

(CM) |tn|2 ≥ 1 (or |λn| ≤ 1) is given by approximately [GL24]

NA

2
=

4π〈As〉
λ2

=
|As|
λ2

convex
object

=
πA

λ2

where 〈As〉 denotes the shadow area of the object

Ω
J(r)

Rx

Ω
J(r)f

Rx

Mats Gustafsson, Lund University, Sweden, 7



Weyl’s law and radiating (open) regions

I Weyl’s law can be interpreted locally as NDoF for radiation to
the volume outside a slightly enlarged version of Ω

N ≈ 2πA/λ2

I NDoF for communication between regions [JW08; PM00]
I For antenna systems often common to consider communication

from a region Ω to the far field. NDoF considered here

I What does these NDoF for radiating systems depend on?
I NDoF defined as the number of significant characteristic modes

(CM) |tn|2 ≥ 1 (or |λn| ≤ 1) is given by approximately [GL24]

NA

2
=

4π〈As〉
λ2

=
|As|
λ2

convex
object

=
πA

λ2

where 〈As〉 denotes the shadow area of the object

Ω
J(r)

Rx

Ω
J(r)f

Rx

Mats Gustafsson, Lund University, Sweden, 7



Weyl’s law and radiating (open) regions

I Weyl’s law can be interpreted locally as NDoF for radiation to
the volume outside a slightly enlarged version of Ω

N ≈ 2πA/λ2

I NDoF for communication between regions [JW08; PM00]
I For antenna systems often common to consider communication

from a region Ω to the far field. NDoF considered here
I What does these NDoF for radiating systems depend on?

I NDoF defined as the number of significant characteristic modes
(CM) |tn|2 ≥ 1 (or |λn| ≤ 1) is given by approximately [GL24]

NA

2
=

4π〈As〉
λ2

=
|As|
λ2

convex
object

=
πA

λ2

where 〈As〉 denotes the shadow area of the object

Ω
J(r)

Rx

Ω
J(r)f

Rx

Mats Gustafsson, Lund University, Sweden, 7



Weyl’s law and radiating (open) regions

I Weyl’s law can be interpreted locally as NDoF for radiation to
the volume outside a slightly enlarged version of Ω

N ≈ 2πA/λ2

I NDoF for communication between regions [JW08; PM00]
I For antenna systems often common to consider communication

from a region Ω to the far field. NDoF considered here
I What does these NDoF for radiating systems depend on?
I NDoF defined as the number of significant characteristic modes

(CM) |tn|2 ≥ 1 (or |λn| ≤ 1) is given by approximately [GL24]

NA

2
=

4π〈As〉
λ2

=
|As|
λ2

convex
object

=
πA

λ2

where 〈As〉 denotes the shadow area of the object

Ω
J(r)

Rx

Ω
J(r)f

Rx
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Average shadow (geometrical cross section) area

Illustration of shadow (geometrical cross section) area for convex (left) and non-convex
(right) objects from three perpendicular directions. Average 〈As〉 = 1

4π

∫
4πAs(k̂) dΩ

I 〈As〉 = A/4 for convex objects with surface area A (Cauchy two centuries ago)

I 〈As〉 = A/2 for planar objects (e.g., PEC surface in the xy-plane)
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Examples: number of CM eigenvalues with |λn| ≤ 1
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I Dashed lines from k2〈As〉/π approximates N for ka� 1

I Normalized with Nsph = 2(ka)2

I Markers from average shadow area 〈As〉/(2πa2)
I N ≈ (ka)2 for spheres and less for other shapes

Number of significant CM (|tn|2 ≥ 0.5 or |λn| ≤ 1) can be estimated from the average
shadow area k2〈As〉/π = |As|/λ2 for ka� 1 [GL24].
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Capacity limits and radiation modes

I The capacity (spectral efficiency) of the idealized system
f = −UI + n from [EG20]

maximize log2

(
det
(
1 + γUPUH

))

subject to Tr(RP) = 1

P � 0,

with the covariance matrix of the currents P = E{IIH}, R is the
resistance matrix [Har68], and γ the SNR

I Diagonalized by radiating modes. Efficiencies νn for waterfilling

max∑
P̃n=1

∞∑

n=1

log2

(
1 + γνnP̃n

)

I 50% efficiency defines good modes νn ≥ 0.5
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Radiation modes

I Radiation modes from the eigenvalue
problem [Gus+20; Sch16]

R0In = %nRρIn,

I Normalized radiation modes for spherical shells and
spherical balls of the electrical sizes ka = 50 and
ka = 500 with n normalized by NA = 2|As|/λ2

I %n for 6 objects with surface resistivity Rs

I %n decay rapidly after the NA

I threshold of 50% efficiency corresponding to
radiation modes %n ≥ 1, which is here used to
define a NDoF for arbitrary shaped regions and
material losses [EG20]
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Derivation

I The maximal partial effective area Aeff = λ2G/(4π) [GC19]

maximize Aeff = λ2IHFHFI

subject to IHRI = 1,

where IHFHFI is proportional to the partial radiation intensity

I The solution is

maxAeff = λ2FHR−1F =
λ2

16π2
aHUR−1UTa,

where the field is expand in spherical waves with expansion coefficients collected
in a column matrix a using F = UTa/(4π) [Gus+20]

I Diagonalizing using radiation modes ã = Qa, with
∑

mQ
2
nm = 1

maxAeff =
λ2

16π2

∑

n

%n|ãn|2
1 + %n

=
λ2

16π2

∑

n,m

%nQ
2
nm|am|2

1 + %n
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%n|ãn|2
1 + %n

=
λ2

16π2

∑

n,m

%nQ
2
nm|am|2

1 + %n

Mats Gustafsson, Lund University, Sweden, 12



Derivation

I The maximal partial effective area Aeff = λ2G/(4π) [GC19]

maximize Aeff = λ2IHFHFI

subject to IHRI = 1,

where IHFHFI is proportional to the partial radiation intensity
I The solution is

maxAeff = λ2FHR−1F =
λ2

16π2
aHUR−1UTa,

where the field is expand in spherical waves with expansion coefficients collected
in a column matrix a using F = UTa/(4π) [Gus+20]

I Diagonalizing using radiation modes ã = Qa, with
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I Average of maxAeff over all directions and polarizations using the plane wave
expansion an = 4πjτ−1−lê · Y n(k̂) [Kri16] with spherical harmonics Y n and
ê · k̂ = 0 results in

〈|an|2〉 =
1

8π2

∫

2π

∫

4π
|an|2 dΩk̂ dΩê = 2π

∫

4π
Y ν(k̂) · Y ν(k̂) dΩk̂ = 2π

I Identity for the average maximal effective area expressed in %n

〈maxAeff〉 =
λ2

8π

∞∑

n=1

νn, 〈maxG〉 =
1

2

∑
νn

I Typical surface resistivities of metals, such as Rs ≈ 0.01 Ω/� for Cu, the %n
approximately divide into two groups: those with %n � 1 and those with %n � 1,
resulting in efficiencies νn according to

νn =
%n

1 + %m
≈
{

1 n < NA

0 n > NA,

where NA denotes the NDoF for the given shape and frequency
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I Inserting using the cutoff produces the estimates

〈maxAeff〉 ≈
λ2

8π
NA and NA ≈ 2〈maxG〉

I maximal effective area in a direction r̂ approach the geometrical cross section,
As(r̂), in the electrically large limit [GC19] maxAeff(r̂)→ As(r̂) and similarly for
the average

〈maxAeff〉 → 〈As〉 as ka→∞.
I Connects the radiation modes and geometrical properties of the region Ω

I Asymptotic NDoF

NA ≈
8π〈As〉
λ2

=
2|As|
λ2

as ka→∞,

where |As| = 4π〈As〉 denotes the total shadow area

I NDoF is twice the number of significant characteristic modes [GL24] and identical
to Weyl’s law for convex shapes
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Electric and magnetic currents

I Magnetic and electric currents increases the
NDoF compared with the solely electric case.
This is particularly evident for electrical sizes
where the geometrical structure is not resolved
by the wavelength

I Normalized radiation modes for an oblate
spheroid (ξ = 0.01) and disc (ξ = 0) using only
electric current density J or both electric and
magnetic M current densities
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I NDoF of infinitely thin sheets such as planar regions do not directly follow from
Weyl’s law as they do not have an inner region

I Considering e.g., a planar region with only electric currents enforces a symmetry
of the radiated field in the up and down directions reducing the NDoF [EG20]
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Electric and magnetic currents

I Effective NDoF [Shi+00; Yua+22] expressed in
radiation mode efficiency as

Ne =
(TrHHH)2

‖HHH‖2F
=

(
∑∞

n=1 νn)2

∑∞
n=1 ν

2
n

.

Depend on the material losses but not on a
threshold level for the efficiency

I Effective degrees of freedom of two square
plates with side lengths ` separated distance d

I Electric and magnetic currents are used
I The results are compared with the average

shadow area for distances d/` normalized with
the average shadow area for a single plate
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Conclusions

I Weyl’s law NDoF∼ 2πA/λ2

I Radiating (far field) NDoF asymptotically
NA = 2|As|/λ2 (optimal object)

I Identical for convex shapes |As| = 4π〈As〉 = πA
I Two times the number of significant CM (fixed

lossless object)
I Physical insight complementing numerics
I Need electric and magnetic currents for sheets and

thin structures
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