

An overview of stored electromagnetic energy

Mats Gustafsson and B. Lars G. Jonsson (Doruk Tayli)

Electrical and Information Technology, Lund University, Sweden

ICEAA, FIELDS AND WAVES. In Memoriam Professor Karl J. Langenberg, Aruba, August 6, 2014

Stored energy and antennas

- ▶ Single frequency antenna optimization, *e.g.*, minimize Q.
- Current optimization.
- Physical bounds.

Express the stored energy in the current density.

Stored EM energy expressions (free space)

 Subtraction of the energy in the radiated field (far field F) (Collin & Rothschild 1964, Yaghjian & Best 2005)

$$W_{\rm F}^{\rm (E)} = rac{\epsilon_0}{4} \int_{\mathbb{R}^3_{\rm r}} |\boldsymbol{E}(\boldsymbol{r})|^2 - rac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{r^2} \,\mathrm{dV}$$

 Expressed in the frequency derivative of the reactance (Fante 1969, Yaghjian & Best 2005)

$$W_{\rm F}^{\rm (E)} = \frac{|I_0|^2}{4} X_{\rm in}' - \frac{1}{2\eta_0} \operatorname{Im} \int_{\Omega} \boldsymbol{F}'(\hat{\boldsymbol{r}}) \cdot \boldsymbol{F}^*(\hat{\boldsymbol{r}}) \,\mathrm{d}\Omega$$

 In the current density (Vandenbosch 2010, see also Geyi 2003, Gustafsson & Jonsson 2012)

$$W_{\mathrm{C}}^{(\mathrm{E})} = \frac{\eta_0}{4\omega} \int_V \int_V \nabla_1 \cdot \boldsymbol{J}_1 \nabla_2 \cdot \boldsymbol{J}_2^* \frac{\cos(kr_{12})}{4\pi kr_{12}} - \left(k^2 \boldsymbol{J}_1 \cdot \boldsymbol{J}_2^* - \nabla_1 \cdot \boldsymbol{J}_1 \nabla_2 \cdot \boldsymbol{J}_2^*\right) \frac{\sin(kr_{12})}{8\pi} \,\mathrm{dV}_1 \,\mathrm{dV}_2$$

Subtracted far field approach

$$W_{\rm F}^{\rm (E)} = \frac{\epsilon_0}{4} \int_{\mathbb{R}^3_{\rm r}} |\boldsymbol{E}(\boldsymbol{r})|^2 - \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{r^2} \,\mathrm{dV}$$

Have shown that $W_{\rm F}^{\rm (E)} = W_{\rm C}^{\rm (E)} + W_{\rm c,0}$:

$$W_{\mathrm{C}}^{(\mathrm{E})} = \frac{\eta_0}{4\omega} \int_V \int_V \nabla_1 \cdot \boldsymbol{J}_1 \nabla_2 \cdot \boldsymbol{J}_2^* \frac{\cos(kr_{12})}{4\pi k r_{12}} - \left(k^2 \boldsymbol{J}_1 \cdot \boldsymbol{J}_2^* - \nabla_1 \cdot \boldsymbol{J}_1 \nabla_2 \cdot \boldsymbol{J}_2^*\right) \frac{\sin(kr_{12})}{8\pi} \,\mathrm{dV}_1 \,\mathrm{dV}_2$$

with ${m J}_n={m J}({m r}_n)$, n=1,2 and a coordinate dependent part

$$W_{c,0} = \frac{\eta_0}{4\omega} \int_V \int_V \operatorname{Im} \left\{ k^2 \boldsymbol{J}_1 \cdot \boldsymbol{J}_2^* - \nabla_1 \cdot \boldsymbol{J}_1 \nabla_2 \cdot \boldsymbol{J}_2^* \right\} \frac{r_1^2 - r_2^2}{8\pi r_{12}} k \, j_1(kr_{12}) \, \mathrm{dV}_1 \, \mathrm{dV}_2$$

where $j_1(z) = (\sin(z) - z\cos(z))/z^2$ is a spherical Bessel function. Gustafsson, Jonsson: Stored electromagnetic energy and antenna Q, 2012

Subtracted far field: comments

 Coordinate dependent for far-fields F with

$$W_{\mathrm{c},0} - W_{\mathrm{c},\boldsymbol{d}} = rac{\epsilon_0}{4} \boldsymbol{d} \cdot \int_{\Omega} \hat{\boldsymbol{r}} |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2 \,\mathrm{d}\Omega \neq 0$$

- Identical coordinate independent part as for the stored energy introduced by Vandenbosch 2010.
- Can produce negative values for lager structures.
- Difficult to generalize to antennas embedded in lossy media (no far field).

We now introduce an alternative approach to analyze antennas in lossy (dispersive) media.

Frequency derivatives of impedance/admittance matrices

The impedance and admittance matrices relate the voltages and currents

$$\mathbf{ZI} = \mathbf{V}$$
 or $\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{YV}$

The (angular) frequency derivative of the admittance matrix is

$$\mathbf{Y}' = \frac{\partial \mathbf{Y}}{\partial \omega} = \frac{\partial \mathbf{Z}^{-1}}{\partial \omega} = -\mathbf{Z}^{-1}\mathbf{Z}'\mathbf{Z}^{-1} = -\mathbf{Y}\mathbf{Z}'\mathbf{Y}$$

Note there are no complex conjugates. Hence, better to use quadratic forms with the transpose $\mathbf{V}^T \mathbf{Y}' \mathbf{V}$ than Hermitian transpose $\mathbf{V}^H \mathbf{Y}' \mathbf{V} = \mathbf{V}^{T*} \mathbf{Y}' \mathbf{V}$.

For the case of a voltage source (frequency independent)

$$Y_{\rm in} = \frac{1}{Z_{\rm in}} = \frac{\mathbf{V}^{\rm T} \mathbf{Y} \mathbf{V}}{V_{\rm in}^2} \quad \text{and} \ V_{\rm in}^2 Y_{\rm in}' = \mathbf{V}^{\rm T} \mathbf{Y}' \mathbf{V} = -\mathbf{I}^{\rm T} \mathbf{Z}' \mathbf{I}.$$

Consider a voltage source and use the Kirchoffs' laws to construct the linear system ${\bf ZI}={\bf V},$ where the impedance matrix ${\bf Z}={\bf R}+j{\bf X}$ contains elements of the form

$$Z_{ij} = R_{ij} + jX_{ij} = R_{ij} + j\left(\omega L_{ij} - \frac{1}{\omega C_{ij}}\right)$$

The differentiated impedance matrix $\mathbf{Z}'=j\mathbf{X}'$ is imaginary valued with the elements

$$X_{ij}' = \frac{\partial}{\partial \omega} \left(\omega L_{ij} - \frac{1}{\omega C_{ij}} \right) = L_{ij} + \frac{1}{\omega^2 C_{ij}}$$

Differentiated input admittance and impedance

$$Y_{\rm in}' = -j \mathbf{I}^{\rm T} \mathbf{X'} \mathbf{I} / V_{\rm in}^2 \quad \text{and} \ Z_{\rm in}' = -Z_{\rm in}^2 Y_{\rm in}' = j \mathbf{I}^{\rm T} \mathbf{X'} \mathbf{I} / I_{\rm in}^2$$

Energy in lumped circuits

Time average stored energy in capacitors and in inductors

$$W^{(\mathrm{E})} = \frac{C|V|^2}{4} = \frac{|I|^2}{4\omega^2 C} \quad \text{and} \ W^{(\mathrm{M})} = \frac{L|I|^2}{4}$$

Contain absolute values $|I|^2$ and $|V|^2$, need to use Hermitian transpose. For a circuit network

$$W^{(\mathrm{M})} - W^{(\mathrm{E})} = \frac{\mathbf{I}^{\mathsf{H}} \mathbf{X} \mathbf{I}}{4\omega} \quad \text{and} \ W^{(\mathrm{E})} + W^{(\mathrm{M})} = \frac{\mathbf{I}^{\mathsf{H}} \mathbf{X}' \mathbf{I}}{4} \geq 0$$

reactance ${\bf X}$ for difference $W^{({\rm M})}-W^{({\rm E})}$ and differentiated reactance ${\bf X'}$ the sum $W^{({\rm M})}+W^{({\rm E})}.$

Energy in lumped circuits

Time average stored energy in capacitors and in inductors

$$W^{(\mathrm{E})} = \frac{C|V|^2}{4} = \frac{|I|^2}{4\omega^2 C} \quad \text{and} \ W^{(\mathrm{M})} = \frac{L|I|^2}{4}$$

Contain absolute values $|I|^2$ and $|V|^2,$ need to use Hermitian transpose. For a circuit network

$$W^{(\mathrm{M})} = \frac{1}{8} \mathbf{I}^{\mathsf{H}} \left(\frac{\partial \mathbf{X}}{\partial \omega} + \frac{\mathbf{X}}{\omega} \right) \mathbf{I} = \frac{1}{4} \sum_{i,j=1}^{N} I_i^* L_{ij} I_j \ge 0$$
$$W^{(\mathrm{E})} = \frac{1}{8} \mathbf{I}^{\mathsf{H}} \left(\frac{\partial \mathbf{X}}{\partial \omega} - \frac{\mathbf{X}}{\omega} \right) \mathbf{I} = \frac{1}{4\omega^2} \sum_{i,j=1}^{N} I_i^* C_{ij}^{-1} I_j \ge 0,$$

A 7

Q and $Q_{\rm Z_{\rm in}^\prime}$ for lumped circuits

Assume for simplicity a self-resonant circuit (antenna)

$$Q_{\mathbf{Z}_{\mathrm{in}}'} = \frac{\omega |Z_{\mathrm{in}}'|}{2R_{\mathrm{in}}} = \frac{\omega |\mathbf{I}^{\mathrm{T}} \mathbf{X}' \mathbf{I}|}{2\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I}}$$

and

$$Q = \frac{2\omega \max\{W^{(\mathrm{E})}, W^{(\mathrm{M})}\}}{P_{\mathrm{d}}} = \frac{\omega \mathbf{I}^{\mathsf{H}} \mathbf{X}' \mathbf{I}}{2\mathbf{I}^{\mathsf{H}} \mathbf{R} \mathbf{I}}$$

Transpose for $Q_{Z'_{in}}$ and Hermitian transpose for QAlso the inequality $Q \ge Q_{Z'_{in}}$ as $(\mathbf{X}' = \mathbf{U}^{T} \mathbf{\Lambda} \mathbf{U}$ real valued) $\mathbf{I}^{H} \mathbf{X}' \mathbf{I} = (\mathbf{U} \mathbf{I})^{H} \mathbf{\Lambda} \mathbf{U} \mathbf{I} \ge |(\mathbf{U} \mathbf{I})^{T} \mathbf{\Lambda} \mathbf{U} \mathbf{I}| = |\mathbf{I}^{T} \mathbf{X}' \mathbf{I}| \ge 0$

with equality (to 0) for some current ${\bf I}$ (in the matrix case).

${\it Z}_{in}$ for antennas using MoM

Use a method of moments (MoM) formulation of the electric field integral equation (EFIE). Impedance matrix ${\bf Z}={\bf R}+j{\bf X}$

$$\frac{Z_{ij}}{\eta} = j \int_{V} \int_{V} \left(k^2 \boldsymbol{\psi}_{i1} \cdot \boldsymbol{\psi}_{j2} - \nabla_1 \cdot \boldsymbol{\psi}_{i1} \nabla_2 \cdot \boldsymbol{\psi}_{j2} \right) \frac{\mathrm{e}^{-\mathrm{j}kR_{12}}}{4\pi k R_{12}} \,\mathrm{dV}_1 \,\mathrm{dV}_2$$

where $\psi_i(\mathbf{r}_n)$ with i = 1, ..., N and n = 1, 2 and $R_{12} = |\mathbf{r}_1 - \mathbf{r}_2|$. The current density is $\mathbf{J}(\mathbf{r}) = \sum_{i=1}^N I_i \psi_i(\mathbf{r})$ with the expansion coefficients determined from

$$\mathbf{ZI} = \mathbf{V}$$
 or $\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{YV}$

where V is the column matrix with excitation coefficients and $\mathbf{Y} = \mathbf{G} + j\mathbf{B}$ is the admittance matrix. The input admittance, $Y_{in} = G_{in} + jB_{in} = Z_{in}^{-1}$, is

$$Y_{\rm in} = 1/Z_{\rm in} = \mathbf{V}^{\rm T} \mathbf{Y} \mathbf{V} / V_{\rm in}^2$$

where $Z_{in} = R_{in} + jX_{in}$ is the input impedance.

${\it Q}_{\rm Z_{\rm in}^{\prime}}$ and ${\it Q}$ for antennas (fields)

Differentiate the MoM impedance matrix

$$\frac{k \partial Z_{ij}}{\eta \partial k} = \int_V \int_V j \left(k^2 \psi_{i1} \cdot \psi_{j2} + \nabla_1 \cdot \psi_{i1} \nabla_2 \cdot \psi_{j2} \right) \frac{e^{-jkR_{12}}}{4\pi kR_{12}} \\ + \left(k^2 \psi_{i1} \cdot \psi_{j2} - \nabla_1 \cdot \psi_{i1} \nabla_2 \cdot \psi_{j2} \right) \frac{e^{-jkR_{12}}}{4\pi} \, \mathrm{dV}_1 \, \mathrm{dV}_2$$

As for the lumped circuit case

$$V_{in}^2 Y_{in}' = (\mathbf{V}^T \mathbf{Y} \mathbf{V})' = \mathbf{V}^T \mathbf{Y}' \mathbf{V} = -\mathbf{I}^T \mathbf{Z}' \mathbf{I}.$$

and the stored energy determined from \mathbf{X}'

$$W_{\mathrm{e}\mathbf{X}'} + W_{\mathrm{m}\mathbf{X}'} = \frac{1}{4}\mathbf{I}^{\mathsf{H}}\mathbf{X}'\mathbf{I}$$

is identical to the stored energy expressions introduced by Vandenbosch 2010.

Antenna examples (free space) Q from stored energy expressed in the current density $Q_{\rm C}$, circuits $Q_{\rm Z_B}$, and differentiated impedance $Q_{\rm Z'}$

Antenna examples (free space)

Q from stored energy expressed in the current density $Q_{\rm C},$ circuits $Q_{\rm Z_B},$ and differentiated impedance $Q_{\rm Z'}$

Q computed from

- the currents, $Q_{\rm C}$.
- ▶ a circuit model synthesized from the input impedance using Brune synthesis (1931), Q_{ZB}.
- differentiation of the (tuned) input impedance,

$$Q_{\mathbf{Z}'_{\mathrm{in}}} = \frac{\omega_0 |Z'_{\mathrm{in}}|}{2R_{\mathrm{in}}} = \omega_0 |\Gamma'|.$$

All agree for $Q \gg 1$ but the Q from the differentiated impedance $(Q_{Z'_{in}})$ is lower in some regions. Which one is most accurate/best?

Stored energy from circuit models

Resonance circuits Padé (local) approximation around the resonance frequency (also an all-pass filter), *cf.*, $Q_{Z'} = \frac{\omega_0|Z'|}{2R} = \omega_0|\Gamma'|$

Brune synthesis Brune (1931) synthesized circuit from the input impedance. The negative quantities are replaced by ideal transformers. Here Q-factor $Q_{Z_{\rm R}}$

The frequency derivative of the EFIE impedance matrix ${\bf Z}$ is

$$\omega \frac{\partial Z_{ij}}{\partial \omega} = k \frac{\partial (Z_{ij}/\eta)}{\partial k} \frac{\eta \omega}{k} \frac{\partial k}{\partial \omega} + \omega \frac{Z_{ij}}{\eta} \frac{\partial \eta}{\partial \omega}$$

for a temporally dispersive background medium with $k=\omega\sqrt{\epsilon\mu}$ and $\eta=\sqrt{\mu/\epsilon}.$ The derivative simplifies to

$$\omega \frac{\partial Z_{ij}}{\partial \omega} = k \frac{\partial (Z_{ij}/\eta)}{\partial k} \eta \left(\frac{\omega \partial \epsilon}{2\epsilon \partial \omega} + 1 \right) - \frac{Z_{ij}}{2} \frac{\omega \partial \epsilon}{\epsilon \partial \omega}$$

for the common case of a non-magnetic medium, $\mu_{\rm r}=1.$

Multiplication of the previously calculated derivative (with respect to the wavenumber k in the medium) with a factor that only depends on the medium. The factor $\omega \epsilon' = (\omega \epsilon)' - \epsilon$ is similar to the classical approach used to define the energy density in dispersive media.

Numerical examples: Debye media

Numerical examples: Debye media

Numerical examples: Debye media

Numerical examples: Lorentz media

Numerical examples: Lorentz media

Numerical examples: Lorentz $\epsilon_{ m r} = \mu_{ m r}$ media

Numerical examples: Lorentz $\epsilon_{ m r} = \mu_{ m r}$ media

Summary: Stored EM energies

- ► Introduced by Vandenbosch in *Reactive energies, impedance, and Q factor of radiating structures*, IEEE-TAP 2010.
- ▶ In the limit $ka \rightarrow 0$ by Geyi, IEEE-TAP 2003 and also similar expressions by Carpenter 1989.
- ▶ Verification for wire antennas in Hazdra *etal*, IEEE-AWPL 2011.
- Some issues with 'negative stored energy' for large structures in Gustafsson *etal*, IEEE-TAP 2012. See also Gustafsson and Jonsson, *Stored Electromagnetic Energy and Antenna Q*, 2012.
- ► Time-domain version by Vandenbosch 2013.
- $Q_{\mathbf{Z}'_{in}}$ formulation by Capek *etal*, IEEE-TAP 2014.

One of the most powerful new tools in EM and antenna theory. Still many open questions and probably no consensus (yet).

- ► How do we interpret the stored energy? Subtracted far-field...
- How do we verify the expressions? Circuit models (Brune), unique,...
- ▶ Dialectics, losses, ... There are some suggestions and initial results...

Q-factor and stored energy

The Q-factor for a tuned antenna is

$$Q = \max\{Q^{(E)}, Q^{(M)}\}, \quad Q^{(E)} = \frac{2\omega W^{(E)}}{P_{r}}, \quad Q^{(M)} = \frac{2\omega W^{(M)}}{P_{r}}$$

and $W^{\rm (E)}$ is the stored electric energy, $W^{\rm (M)}$ the stored magnetic energy, and $P_{\rm r}$ the dissipated (radiated for a loss-less antenna) power.

Fractional bandwidth for single resonance circuits

$$B = \frac{\omega_2 - \omega_1}{\omega_0} \approx \frac{2\Gamma_0}{Q\sqrt{1 - \Gamma_0^2}}$$

where $\omega_0 = (\omega_1 + \omega_2)/2$ and Γ_0 is the threshold of the reflection coefficient.

► The Fano limit for a single resonance circuit, B ≤ 27.29/(Q|Γ_{0,dB}|), is an upper bound on the bandwidth after matching.

Brune synthesize

Iterative procedure to synthesize circuit models from PR (positive real rational functions) by Brune 1931.

- Approximate the input impedance with a rational PR function (hard problem).
- 2. Apply Brune synthesis and compute the stored energy in the capacitors and inductors.

