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Characteristic modes (CM)

I Developed in the 70s by Garbacz, Turpin, Harrington, Mautz [HM71].
I Provides physical understanding and complements simulation and optimization

driven antenna design.
I Modes (electric current) determined by the geometry (here lossless).
I Scattering properties, resonances, antenna feed placement, ...
I Generalized eigenvalue problem XIn = λnRrIn, where Z = Rr + jX denotes the

MoM impedance matrix.
I Orthogonal far fields IH

mRrIn = δmn and reactance IH
mXIn = λnδmn.

First three modes for a rectangle. Only a few dominant modes (small |λn|) for
electrically small structures.
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Expansion of a current density in characteristic modes

Expansion of a current density

I =

N∑
n=1

αnIn and J(r) =
N∑
n=1

αnJn(r)

Diagonalization of the MoM equation ZI = V

∑
n

αnI
T
nZIn = αn(1 + jλn) = IT

nV→ αn =
IT
nV

1 + jλn

When can one expand currents in CM, convergence, theory, practice?

I Always possible for matrices. This is a general property for finite dimensional
cases.

I What happens in the (continuous) infinite operator case?
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Spherical (BoR) torus with radius ka = 4
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Spherical (BoR) torus with radius ka = 4
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Efficient and accurate evaluation of Rr

The real-valued part of the impedance matrix with elements

Zpq = jkη0

∫
Ω

∫
Ω
ψp(r1) ·G(r1, r2) ·ψq(r2) dS1 dS2

is decomposed by expanding the Green dyadic in regular u(1)
υ and out-going u(4)

υ vector
spherical waves

G(r1, r2) = −jk
∑
υ

u(1)
υ (kr<)u(4)

υ (kr>),

where υ(τ, σ,m, l), r< = r1 and r> = r2 if |r1| < |r2| and so on. Factorization
Rr = STS = SHS, where S has the elements

Sυp = kη
1/2
0

∫
Ω
ψp(r) · u(1)

υ (kr) dS.

See [Tay+18] and compare with the T-matrix [Kri16], FMM [CRW93], and far-field
expansion [GN13] methods.
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Computationally efficient CM evaluation

Factorize the radiation matrix Rr = STS to rewrite the Nψ ×Nψ generalized
eigenvalue problem eig(X,Rr)

XIn = λnRrIn = λnS
TSIn

by moving X to the right-hand side (or use X + αRr if X is not invertible)

In = λnX
−1STSIn =⇒ SIn = λnSX−1STSIn =⇒ SX−1STf = λ−1

n fn

with fn = SIn. Producing the Nα ×Nα eigenvalue problem [Tay+18]

λ−1
n = eig(SX−1ST) with In = λnX

−1STfn

Nψ

Nα

Nψ

Nψ Nα

Nψ

=

Nα

Nα
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CM from diagonalization of the T-matrix (I)

Ω
Ei

Es

Expand in regular u(1)
υ and outgoing u(4)

υ spherical waves

Ei = kη
1/2
0

∑
υ

aυ u(1)
υ (kr) and Es = kη

1/2
0

∑
υ

fυ u(4)
υ (kr)

outside a circumscribing sphere [Han88]. Transition matrix

f = Ta

characterizes the scattering properties of the object [Kri16].

Expansion of the incident field in regular spherical waves is written V = STa, i.e.,

Vn =

∫
Ω

Ψn(r̂) ·Ei(r) dV=
∑
υ

aυkη
1/2
0

∫
Ω

Ψn(r̂) · u(1)
υ (kr) dV=

∑
υ

aυSυn
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CM from diagonalization of the T-matrix (II)

Expansion of the incident field in regular spherical waves V = STa substituted into the
MoM formula

ZI = (Rr + jX)I = (STS + jX)I = V = STa

and multiplication with SX−1 produces

(SX−1STS + jS)I = (SX−1ST + j1)SI = (SX−1ST + j1)f = SX−1STa.

Here it is seen that the transition matrix T mapping regular spherical waves to
outgoing spherical waves, f = Ta, is diagonalized by characteristic modes, i.e.,
SX−1ST = FΛ−1FT diagonalizes the T-matrix as

(Λ−1 + j1)FTf = Λ−1FTa⇒ f = F(Λ−1 + j1)−1Λ−1FTa = F(1 + jΛ)−1FTa

This is a short and simple algebraic formulation of Garbacz, Turpin, Harrington, and
Mautz original suggestion [HM71].
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Spherical PEC shell

The T-matrix and characteristic modes are well known for a PEC spherical shell.
Diagonal T-matrix determined from the Mie series giving

tτl = −
R

(1)
τl (ka)

R
(4)
τl (ka)

= − R
(1)
τl (ka)

R
(1)
τl (ka) + jR

(2)
τl (ka)

= − 1

1− j R
(2)
τl (ka)/R

(1)
τl (ka)

for τ = 1, 2 and l = 1, 2, ... corresponding to the CM values

λτl = −
R

(2)
τl (ka)

R
(1)
τl (ka)

where R
(p)
τl denote the radial functions [Han88] defined as R

(p)
1l = z

(p)
l and

R
(p)
2l (κ) = (κz

(p)
l (κ))′/κ with z

(1)
l = jl, z

(2)
l = nl, and z

(3,4)
l = h

(1,2)
l denoting spherical

Bessel, Neumann, and Hankel function, respectively.
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CM excitation ZIn = Vn

Excitation (incident field) corresponding to a characteristic mode In = λnX
−1STfn

can be written

ZIn = (STS + jX)λnX
−1STfn = ST(SX−1ST + j1)fnλn = STfn(1 + jλn) = Vn

Characteristic modes can be used to expand current densities corresponding to incident
waves which can be expanded in regular spherical waves (an = (1 + jλn)fn) such as
plane waves or near fields with sources supported outside a sphere circumscribing the
object.

⊗

source outside

⊗

source inside

⊗

source inside
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Expansion in regular waves

Can use large spheres to show that the
relevant region divide into sources
inside and outside the convex hull of
the object.

Can expand in CM if the source region
can separated from the object with a
hyperplane.

I Size of sphere in ka indicate how
many modes are needed to
expand the field.

I Related to the number of CMs.

I Also need to consider expansion
of the source.

⊗

⊗
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Spherical (BoR) torus with radius ka = 4
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Spherical (BoR) torus with radius ka = 2
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Spherical (BoR) torus with radius ka = 2
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Spherical (BoR) torus with radius ka = 2 (hole size)
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Spherical (BoR) torus with radius ka = 2 (hole size)
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Radiation modes

Radiation modes %n are defined by the eigenvalue problem [EG18; GC19; Sch16]

RrIn = %nRΩIn or from an SVD of SΥ−1

where spherical wave Rr = SHS and Cholesky RΩ = ΥHΥ decompositions are used.
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Non-radiating currents

The nullspace of Rr = SHS (SI = 0) is related to non-radiating currents
I Volume distributed current density

JNR(r) = ∇× (∇× F )− k2F

with a differentiable vector field F produces a field E = −jωµF . Note F = 0
imply JNR = E = 0 [DW73; Kri16].

I Surface currents [Dev04] are more involved.
I Cavity solutions with PEC boundary create a field with support inside the cavity.

Low-dimensional space at the cavity resonance.
I Cancellation from two sources with identical radiation.

J2
J1 J2 J1
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Non-radiating currents
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Conclusions

I Decomposition of the radiation matrix
Rr = STS

I Diagonalization of the transition matrix

I Excitation in the form of regular waves

I Convergence can be bad for sources inside of a
structures

I Non-radiating currents

I Rapid decay of the radiation modes
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