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Design of small antennas

Folded spherical helix SonyEricsson P1i Fragmented patches

I There are many advanced methods to design small antennas.
I Often antennas embedded in structures.
I Performance in Q, bandwidth and efficiency.
I How does the performance depend on the design volume?
I What can we learn from performance bounds and optimal

currents?
I Can we automate the design of optimal antennas?
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Physical bounds on antennas: methods
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General optimization formulation for
the stored energy at a fixed
frequency. Uses the stored energy
expressions by Vandenbosch (2010)
and various optimization
formulations, see Gustafsson,
Cismasu & Jonsson (2012) and
Gustafsson & Nordebo (2013):
+arbitrary shape
+embedded structures
+current distributions
-single frequency

Based on mode expansions to
calculate the stored energy, see the
classical research by Chu (1948),
Collin & Rothschild (1964), and
many others:
+simple
+closed form expressions
+well developed
-spheres
-single frequency

Uses the forward scattering sum rule
to analyze receiving antennas, see
Gustafsson, Sohl & Kristensson
(2007,2009):
+arbitrary shape and size
+bandwidth
+closed form expressions
+based on an identity
-entire volumes
-absorption efficiency

Uses circuit models for the antennas.
Used originally by Wheeler (1947),
Chu (1948) and later Thal
(2006,2013)
+simple models
+physical intuition
± combined with mode expansions
+combined with matching
-approximate
-....
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Antenna and current optimization

Antenna design: produce the desired
current distribution on the structure
by shaping and choosing the
materials.

I Have a given maximal size of
the antenna structure.

I Antenna optimization:
determine the shape and
material properties for optimal
performance.

I Current optimization: determine
an optimal current distribution
from all possible currents in the
available geometry.

Maximal size of the antenna.

Antenna geometry with feed point.

Current distribution on the antenna.
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Finite ground plane with {6, 10, 25, 100}% antenna region
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Q-factor and single frequency evaluation
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Reflection coefficient
|Γ | for a RCL circuit
with Q-factors
Q = {5, 10, 40}.
Fractional bandwidths
for Γ0 = {1/

√
2, 1/3}.

The Q-factor is defined as the ratio between
the stored electric, We, and magnetic, Wm,
energies and the dissipated power, i.e.,

Q =
2ωmax{We,Wm}

Prad + Ploss
.

Fractional bandwidth for single resonances

B ≈ 2

Q

Γ0√
1− Γ 2

0

Single frequency evaluation

use the Q-factor to estimate the bandwidth.
Need to:

1. Compute the stored energy.

2. Solve the optimization problems.
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What is (stored) EM energy?

J(r)

E(r), H(r)

electric current density

near field

far field

induced EM field

²=²0
¹=¹0

(reactive and radiated fields)

(radiated field)

I Time average energy density
ε0|E|2/4 and µ0|H|2/4.

I What is stored and radiated?

I How can we express the (stored)
energy in the current (density)?

I First, currents in free space.

Lumped elements

C

+ −
V

I
L

I

Time average stored energy in
capacitors

We =
C|V |2

4
=
|I|2

4ω2C

and in inductors

Wm =
L|I|2

4
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Stored energy
and Q
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Subtracted far field approach

W
(E)
F =

ε0
4

∫

R3
r

|E(r)|2 − |F (r̂)|2
r2

dV

Have shown that W
(E)
F = W

(E)
C +Wc,0:

J(r)

E(r), H(r)

electric current density

near field

far field

induced EM field

²=²0
¹=¹0

(reactive and radiated fields)

(radiated field)

W
(E)
C =

η0

4ω

∫

V

∫

V
∇1 · J1∇2 · J∗2

cos(kr12)

4πkr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

8π

with Jn = J(rn), n = 1, 2 and a coordinate dependent part

Wc,0 =
η0

4ω

∫

V

∫

V
Im
{
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

}r2
1 − r2

2

8πr12
k1(kr12)

where 1(z) = (sin(z)− z cos(z))/z2 is a spherical Bessel function.
Gustafsson & Jonsson: Stored electromagnetic energy and antenna Q, 2012
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Subtracted far field: comments

I Coordinate dependent for far-fields F
with

Wc,0 −Wc, =
ε0
4
d ·
∫

Ω
r̂|F (r̂)|2 dΩ 6= 0

I Identical coordinate independent part as
for the stored energy introduced by
Vandenbosch 2010 (Geyi 2003 ka� 1).

I Can produce negative values for lager
structures.

I Difficult to generalize to antennas
embedded in lossy media (no far field).
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We now introduce an alternative approach to analyze antennas in
lossy (dispersive) media.

Yaghjian & Best IEEE-TAP 2005, Gustafsson & Jonsson 2012.
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Frequency derivatives of impedance/admittance matrices

Impedance and admittance matrices relate voltages and currents

ZI = V or I = Z−1V = YV

The (angular) frequency derivative of the admittance matrix is

Y′ =
∂Y

∂ω
=
∂Z−1

∂ω
= −Z−1Z′Z−1 = −YZ′Y

No complex conjugate. Better to use quadratic forms with the trans-
pose VTY′V than Hermitian transpose VHY′V = VT∗Y′V.

For the case of a (frequency independent (MoM)) voltage source

Yin =
1

Zin
=

VTYV

V 2
in

and V 2
inY
′

in = VTY′V = −ITZ′I

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Zin for antennas using MoM

Use a method of moments (MoM) formulation of the electric field
integral equation (EFIE). Impedance matrix Z = R + jX

Zmn
η

= j

∫

S

∫

S

(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4πkR12
dS1 dS2

where ψn1 = ψn(r1), ψn2 = ψn(r2), n = 1, ..., N , and
R12 = |r1 − r2|.
The current density is J(r) =

∑N
n=1 Inψn(r) with the expansion

coefficients determined from

ZI = V or I = Z−1V = YV

where V is a column matrix with the excitation coefficients.
The input admittance is

Yin = 1/Zin = VTYV/V 2
in

where Zin = Rin + jXin is the input impedance.
Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



QZ′
in

and Q for antennas (fields)

Differentiate the MoM impedance matrix

k ∂Zmn
η ∂k

=

∫

V

∫

V
j
(
k2ψm1 ·ψn2 +∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4πkR12

+
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4π
dS1 dS2

Differentiated input admittance

V 2
inY
′

in = (VTYV)′ = VTY′V = −ITZ′I.

The stored energy determined from X′ = ImZ′

WeX′ +WmX′ =
1

4
IHX′I

is identical to the stored energy expressions introduced by
Vandenbosch (IEEE-TAP 2010).

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Q and QZ′
in

for free-space self-resonant antennas

Assume for simplicity a self-resonant antenna (circuit)

QZ′in
=
ω|Z ′in|
2Rin

=
ω|ITZ′I|
2IHRI

and using MoM with the stores energy by Vandenbosch

Q =
2ωmax{WeX′ ,WmX′}

Pd
=
ωIHX′I

2IHRI

Transpose for QZ′in
and Hermitian transpose for Q

I IHX′I ≥ 0 for positive semidefine matrices X′.

I |ITZ′I| = 0 for some I (rank > 1).

See also Capek+etal. IEEE-TAP 2014 for QZ′in
using IH and I′.

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Antenna examples (free space)
Q from stored energy expressed in the current density QC, Brune circuit QZB

in
, and

differentiated input impedance QZ′
in
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Antenna examples (free space)
Q from stored energy expressed in the current density QC, Brune circuit QZB

in
, and

differentiated input impedance QZ′
in

0.2 0.4 0.6 0.8 1 1.2 1.4
1

10

100

 

Q

`/¸

`

Q  C
(E)

Q  
(E)

Q  Z'
(E)

BZ(E)

(E)

(E)
(M)

(M)
(M)

0.5 1 1.5 2 2.5 3
1

10

100
Q

`/¸

`

Q  Z'

Q  C
(E)

Q  
(E)

Q  Z'
(E)

BZ
(E)

(E)

(M)

(M)

Q computed from

I the currents, QC.

I a circuit model synthesized from
the input impedance using
Brune synthesis (1931), QZB

in
.

I differentiation of the (tuned)
input impedance,

QZ′in
=

ω0|Z′in|
2Rin

= ω0|Γ ′|.

All agree for Q � 1 but the Q from
the differentiated impedance (QZ′in

) is
lower in some regions.
Which one is most accurate/best?
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Dispersive media

The frequency derivative of the EFIE impedance matrix Z is

ω
∂Z

∂ω
= k

∂(Z/η)

∂k

ηω

k

∂k

∂ω
+ ω

Z

η

∂η

∂ω

for a temporally dispersive background medium with k = ω
√
εµ

and η =
√
µ/ε. The derivative simplifies to

ω
∂Z

∂ω
= k

∂(Z/η)

∂k
η

(
ω∂ε

2ε∂ω
+ 1

)
− Z

2

ω∂ε

ε∂ω

for the common case of a non-magnetic medium, µr = 1.

Multiplication of the previously calculated derivative (with respect to
the wavenumber k in the medium) with a factor that only depends
on the medium. The factor ωε′ = (ωε)′− ε is similar to the classical
approach used to define the energy density in dispersive media.
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Numerical examples: Debye media
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Numerical examples: Debye media
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Numerical examples: Debye media
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Stored EM energy matrices

Method of Moments approximation (expand J in basis functions)

We ≈
1

4ω
IHXeI stored E-energy, Xe electric reactance

Wm ≈
1

4ω
IHXmI stored M-energy, Xm magnetic reactance

Prad ≈
1

2
IHRrI radiated power

giving Z = Rr + j(Xm −Xe). We also use

F ≈ FHI(far field),E ≈ NHI(near field), I2 ≈ CHI1(induced current)

Pre-computed matrices used in the optimization.
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Convex optimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., N1

Ax = b

f(αx+ βy)

convex

f(x)
αf(x) + βf(y)

f(y)

g(αx+ βy)

not convex

g(x)
αg(x) + βg(y)

g(y)

where fi(x) are convex, i.e., fi(αx + βy) ≤ αfi(x) + βfi(y) for
α, β ∈ R, α+ β = 1, α, β ≥ 0.

Solved with efficient standard algorithms. No risk of getting trapped
in a local minimum. A problem is ’solved’ if formulated as a convex
optimization problem.

Antenna performance expressed in the current density J , e.g.,

I Radiated field F (k̂) = −k̂ × k̂ ×
∫
V J(r)ejkk̂·r dV is affine.

I Radiated power, stored electric and magnetic energies, and
Ohmic losses are positive semi-definite quadratic forms in J .
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Currents for maximal G/Q

Determine a current density J(r) in the volume V that maximizes the
partial-gain Q-factor quotient G(k̂, ê)/Q.

I Partial radiation intensity P (k̂, ê)

G(k̂, ê)

Q
=

2πP (k̂, ê)

c0kmax{We,Wm}
.

I Scale J and reformulate P = 1 as
ê∗ · F = FHI = 1.

I Convex optimization problem:

minimize W

subject to IHXeI ≤W
IHXmI ≤W
FHI = 1

V

J

y

x

z

k

ê

^

Determines a current density J(r) in the volume V with minimal stored
EM energy and unit partial radiation intensity.
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Maximal G(k̂, x̂)/Q for planar rectangles

minimize W

subject to IHXeI ≤W
IHXmI ≤W
FHI = 1

Solution for current densities
confined to planar rectangles with
side lengths `x and `y = 0.5`x.

CVX code: http://cvxr.com/cvx/

cvx begin
variable J(n) complex;
minimize W
subject to

quad form(J,Xe) <= W;
quad form(J,Xm) <= W;
F'*J == 1;

cvx end
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Example of current optimization formulations

Super directivity:

minimizeI max{IHXeI, I
HXmI}

subject to FHI = 1

IHRrI ≤ 4π/(η0D0)

Prescribed far field:

minimize max{IHXeI, I
HXmI}

subject to

∫

Ω
|F (k̂)− F 0(k̂)|2 dΩk̂ < δ

Embedded antennas:

minimize max{IHXeI, I
HXmI}

subject to FHI = 1

I2 = CHI1
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Why convex optimization?

Solved if formulated as a convex optimization problem.

Consider the G/Q problem

minimize max{IHXeI, I
HXmI}

subject to FHI = 1

Many (optimization) algorithms can be used to solve this problem.

I Can e.g., use any of the solvers included in CVX.
I Very simple to use.
I Good for small problems but less efficient for larger problems.

I A dedicated solver for quadratic programs.
I More efficient for larger problems.

I Random search, eg genetic algorithms (GA), particle swarms,....
I Very inefficient. Note you do not (should not) use (GA, ...) to solve

e.g., Ax = b (min. ||Ax− b||).

I We also use a dual formulation
I Computational efficient for large problems.
I Illustrates dual problems and posteriori error estimates.
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Relaxation and dual problem

An illustrative method is to use the inequality

W = max{We,Wm} ≥ αWe + (1− α)Wm = Wα for 0 ≤ α ≤ 1

or with the matrices Xe,Xm

W = max{IHXeI, I
HXmI} ≥Wα = IH

α(αXe + (1− α)Xm)Iα

or for the quotient G/Q

G

Q
=

2πP

ωmax{Weα,Wmα}
≤ 2πP

ωWα
=

2πP

ω(αWeα + (1− αWmα))
=
Gα
Qα

Note P = 1 is fixed in the optimization problem.
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Relaxation and dual problem

The inequality relaxes the G/Q optimization problem

minimize max{IHXeI, I
HXmI} ≥ IH

α(αXe + (1− α)Xm)Iα

subject to FHI = 1

into

maximizeαminimizeIα Wα = IH
α(αXe + (1− α)Xm)Iα

subject to FHIα = 1

0 ≤ α ≤ 1

where for the quotient G/Q (note P = 1)

G

Q
=

2πP

ωmax{Weα,Wmα}
≤ 2πP

ωWα
=

2πP

ω(αWeα + (1− αWmα))
=
Gα
Qα
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Relaxation and dual problem

The dual problem

maximizeαminimizeIα Wα = IH
α(αXe + (1− α)Xm)Iα

subject to FHIα = 1

0 ≤ α ≤ 1

is solved as a linear system (MoM equation) for fixed α with

Iα =

(
αXe + (1− α)Xm

)−1
F

FH
(
αXe + (1− α)Xm

)−1
F

giving the optimization problem

maximize
0≤α≤1

Wα

or

minimize
0≤α≤1

Gα
Qα

= FH
(
αXe + (1− α)Xm

)−1
F
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Why convex optimization: illustration

The upper bound on G/Q|ub is
obtained by solving the dual
(relaxed) problem, i.e., finding the
minimum of the (blue) curve

G

Q

∣∣∣∣
ub

≤ Gα
αQeα + (1− α)Qmα

This is efficiently solved by golden
section search and parabolic
interpolation.

We also compute the actual G/Q for
the current Iα to get
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`/λ ≈ 0.1 or ka ≈ 0.35
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Minimization of Q

The corresponding formulation for Q is not convex. For 0 ≤ α ≤ 1

Q =
max{IHXeI, I

HXmI}
IHRrI

= max{Qe, Qm}

≥ αQe + (1− α)Qm =
IH(αXe + (1− α)Xm)I

IHRrI
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Conclusions
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I Current optimization for physical bounds.

I Stored energy from MoM reactance matrices (basically,
already computed in most MoM codes for surface currents).

I Promising results for temporally dispersive media.

I Convex optimization (efficiently solved with a few Ax = b).
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Minimization of Q

Compare maximization of G/Q with minimization of Q. Use the
same inequality for 0 ≤ α ≤ 1

Q =
max{IHXeI, I

HXmI}
IHRrI

= max{Qe, Qm}

≥ αQe + (1− α)Qm =
IH(αXe + (1− α)Xm)I

IHRrI

The lower bound on Q, Qlb, is a minimization problem for a
Rayleigh quotient solved as a generalized eigenvalue problem

min(αXe + (1− α)Xm,Rr)

Let Qeα and Qmα denote the corresponding electric and magnetic
Q-factors to get the estimate

αQeα + (1− α)Qmα ≤ Qlb ≤ max{Qeα, Qmα}
for the lower bound Qlb.
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Numerical illustration of min .Q and max .G/Q

I The formulation for
min. Q has a duality gap,
i.e., we have an interval
for Qlb here
88 ≤ Qlb ≤ 106.

I The optimization problem
min. Q is not convex.

I The formulation for
max. G/Q has no duality
gap.

I This is common for many
convex optimization
problems.
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Why convex optimization? Simple algorithm

Consider the G/Q problem

minimize W = max{IHXeI, I
HXmI}

subject to Im{FHI} = 1

There are many (optimization) algorithms that can be used to solve this problem.
An illustrative method is to use (0 ≤ α ≤ 1)

W = max{IHXeI, I
HXmI} ≥Wα = IH

α(αXe + (1− α)Xm)Iα

and (hence G/Q ≤ Gα/Qα) to relax to the dual problem

maximizeαminimizeIα Wα = IH
α(αXe + (1− α)Xm)Iα

subject to Im{FHIα} = 1

0 ≤ α ≤ 1

that is solved as a linear system (MoM equation) for fixed α giving

maximize
0≤α≤1

Wα with Iα =

(
αXe + (1− α)Xm

)−1
F

FH
(
αXe + (1− α)Xm

)−1
F

(relaxed problem)
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