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Physical bounds on antennas
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I Properties of the best antenna confined to a given (arbitrary)
geometry, e.g., spheroid, cylinder, elliptic disk, and rectangle.

I Tradeoff between performance and size.
I Performance in

I Directivity bandwidth product: D/Q (half-power B ≈ 2/Q).
I Partial realized gain: (1− |Γ |2)G over a bandwidth.
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Background

I 1947 Wheeler: Bounds based on circuit models.
I 1948 Chu: Bounds on Q and D/Q for spheres.
I 1964 Collin & Rothchild: Closed form expressions of Q for

arbitrary spherical modes, see also Harrington, Collin, Fantes,
Maclean, Gayi, Hansen, Hujanen, Sten, Thiele, Best, Yaghjian,
... (most are based on Chu’s approach using spherical modes.)

I 1999 Foltz & McLean, 2001 Sten, Koivisto, and Hujanen:
Attempts for bounds in spheroidal volumes.

I 2006 Thal: Bounds on Q for small hollow spherical antennas.
I 2007 Gustafsson, Sohl, Kristensson: Bounds on D/Q for

arbitrary geometries (and Q for small antennas).
I 2010 Yaghjian & Stuart: Bounds on Q for dipole antennas in

the limit ka→ 0.
I 2011 Vandenbosch: Bounds on Q for small (non-magnetic)

antennas in the limit ka→ 0.
I 2011 Chalas, Sertel, and Volakis: Bounds on Q using

characteristic modes.
I 2011 Gustafsson, Cismasu, Jonsson: Optimal charge and

current distributions on antennas.
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Background: Chu bound (sphere)
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Calculation of the stored energy and radiated power outside a
sphere with radius a gives the Chu-bounds (1948) for
omni-directional antennas, i.e.,

Q ≥ QChu =
1

(k0a)3
+

1

k0a
and

D

Q
≤ 3

2QChu
≈ 3

2
(k0a)3

for k0a� 1, where k = k0 is the resonance wavenumber
k = 2π/λ = 2πf/c0.
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New physical bounds on antennas (2007)

Given a geometry, V , e.g., sphere, rectangle, spheroid, or cylinder.
Determine how D/Q (directivity bandwidth product) for optimal
antennas depends on size and shape of the geometry.

Solution:

D

Q
≤ ηk30

2π

(
ê ·γe · ê+ (k̂× ê) ·γm · (k̂× ê)

)
is based on

I Antenna forward scattering

I Mathematical identities for Herglotz
functions

V

kê ^

a

@V

M. Gustafsson, C. Sohl, G. Kristensson: Physical limitations on antennas of arbitrary shape Proceedings of the
Royal Society A, 2007
M. Gustafsson, C. Sohl, G. Kristensson: Illustrations of new physical bounds on linearly polarized antennas IEEE
Trans. Antennas Propagat. 2009
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Antenna identity (sum rule)
Lossless linearly polarized antennas

∫ ∞
0

(1− |Γ (k)|2)D(k; k̂, ê)

k4
dk =

η

2

(
ê·γe ·ê+(k̂×ê)·γm ·(k̂×ê)

)
I (1− |Γ (k)|2)D(k; k̂, ê): partial realized gain, cf., Friis

transmission formula.
I Γ (k): reflection coefficient
I D(k; k̂, ê): directivity
I k = 2π/λ = 2πf/c0: wavenumber
I k̂: direction of radiation
I ê: polarization of the electric field, E = E0ê.
I γe: electro-static polarizability dyadic of the structure.
I γm: magneto-static polarizability dyadic (assume γm = 0)
I 0 ≤ η < 1: generalized (all spectrum) absorption efficiency

(η ≈ 1/2 for small antennas).
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Cylindrical dipole

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

max D

ka

Directivity

D/Q∙0.2

^D(k;x,z)^

(1-j¡(k)j  )2
^D(k;x,z)^

d

` x̂
ẑ
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Lossless ẑ-directed dipole, wire diameter d = `/1000, matched to
72 Ω. Weighted area under the black curve (partial realized gain) is
known. Note, half wavelength dipole for ka = π/2 ≈ 1.5 with
directivity D ≈ 1.64 ≈ 2.15 dBi.
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Circumscribing rectangles
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Note, η ≈ 1/2 for small optimal antennas k0a� 1.
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Rectangles, cylinders, elliptic disks, and spheroids
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http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq
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High-contrast polarizability dyadics: γ∞

γ∞ is determined from the induced
normalized surface charge density, ρ, as

γ∞ · ê =

∫
∂V
rρ(r) dS

where ρ satisfies the integral equation∫
∂V

ρ(r′)

4π|r − r′|
dS′ = r · ê+ Cn

with the constraints of zero total charge∫
∂Vn

ρ(r) dS= 0

Can also use FEM (Laplace equation).
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Bounds based on the stored energy

I Yaghjian and Stuart, Lower Bounds on the Q of Electrically
Small Dipole Antennas, TAP 2010. Bounds on Q for small
dipole antennas (in the limit ka→ 0).

I Vandenbosch, Simple procedure to derive lower bounds for
radiation Q of electrically small devices of arbitrary topology,
TAP 2011. Bounds on Q for small (non-magnetic) antennas (in
the limit ka→ 0).

I Chalas, Sertel, and Volakis, Computation of the Q Limits for
Arbitrary-Shaped Antennas Using Characteristic Modes, APS
2011. Bounds on Q not restricted to small ka.

Here, we reformulate the D/Q bound as an optimization problem
that is solved using a variation approach and/or Lagrange
multipliers, see Physical Bounds and Optimal Currents on Antennas,
IEEE-TAP (in press).
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Bounds on D/Q or Q

I Chu derived bounds on Q and D/Q
for dipole antennas.

I Most papers analyze Q for small
spherical dipole antennas. Results are
independent of the direction and
polarization so D = 3/2 and it is
sufficient to determine Q for this case.

I The D/Q results are advantageous for
general shapes as:

I they provide a methodology to
quantify the performance for
different directions and polarizations.

I they can separate linear and circular
polarization.

I D/(Qk3a3) appears to depend
relatively weakly on ka in contrast to
Qk3a3.
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D/Q

V

J(r)

kê ^

a
n̂

@V

Directivity in the radiation intensity
P (k̂, ê) and total radiated power Prad

D(k̂, ê) = 4π
P (k̂, ê)

Prad

Q-factor

Q =
2ωW

Prad
=

2c0kW

Prad
,

where W = max{We,Wm} denotes the
maximum of the stored electric and magnetic energies. The D/Q
quotient cancels Prad

D(k̂, ê)

Q
=

2πP (k̂, ê)

c0kW
.
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D/Q in the current density J

V

J(r)

kê ^

a
n̂

@V

Radiation intensity P (k̂, ê)

P (k̂, ê) =
ζ0k

2

32π2

∣∣∣∣∫
V
ê∗ · J(r)ejkk̂·r dV

∣∣∣∣2 ,
Stored electric energy W̃

(e)
vac = µ0

16πk2
w(e)

w(e) =

∫
V

∫
V
∇1·J1∇2·J∗2

cos(kR12)

R12
−k

2

(
k2J1·J∗2

−∇1 · J1∇2 · J∗2
)

sin(kR12) dV1 dV2,

where J1 = J(r1), J2 = J(r2), R12 = |r1 − r2|.

D(k̂, ê)

Q
= k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
,
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Small antennas ka→ 0

Expand for ka→ 0

D

Q
≤ max

ρ,J(0)

k3
∣∣∣∫V ê∗ · rρ(r) + 1

2 ĥ
∗ × r · J (0)(r) dV

∣∣∣2
max

{ ∫∫
V
ρ1ρ∗2
R12

dV1 dV2,
∫∫
V

J
(0)
1 ·J

(0)∗
2

R12
dV1 dV2

} ,
Electric dipole J (0) = 0

De

Qe
≤ max

ρ

k3

4π

∣∣∫ ê∗ · rρ(r) dV
∣∣2∫

V

∫
V
ρ(r1)ρ∗(r2)
4π|r1−r2| dV1 dV2

.
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With the solution

De(k̂, ê)

Qe
≤ k3

4π
ê∗ · γ∞ · ê.

It verifies our previous bound.
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Non-electrically small antennas

Reformulate the D/Q bound as the minimization
problem

min
J

∫
V

∫
V
∇1 · J1∇2 · J∗2

cos(kR12)

R12

− k
2

(
k2J1 ·J∗2−∇1 ·J1∇2 ·J∗2

)
sin(kR12) dV1 dV2,

subject to the constraint∣∣∣∣∫
V
ê∗ · J(r)ejkk̂·r dV

∣∣∣∣ = 1.

Solve using Lagrange multipliers. It gives bounds
and the optimal current distribution J .
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D/Q bound for rectangles.
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Strip dipole ξ = d/` = {0.001, 0.01, 0.1}
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The stars indicate the performance of strip dipoles with ξ = 0.01.
Almost no dependence on ka for D/(Qk3a3). More dependence on
ka for D and Qk3a3. Note the directivity of the half-wave dipole,
D ≈ 1.64. The optimal current distribution is close to cos(πx/`).Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Optimal current distributions on small spheres

I The optimization problem for small dipole antennas show that
the charge distribution is the most important quantity.

I On a sphere, we have

ρ(θ, φ) = ρ0 cos θ

for optimal antennas with polarization ê = ẑ.

I The current density satisfies

∇ · J = −jkρ

Many solutions, e.g., all surface currents

J = Jθ0θ̂
(

sin θ − β

sin θ

)
+

1

sin θ

∂A

∂φ
θ̂ − ∂A

∂θ
φ̂

where Jθ0 = −jkaρ0, β is a constant, and A = A(θ, φ)
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Optimal current distributions on small spheres

Some solutions:

I Spherical dipole,
β = 0, A = 0.

I Capped dipole,
β = 1, A = 0.

I Folded spherical helix,
β = 0, A 6= 0.

They all have almost identical
charge distributions

ρ(θ, φ) = ρ0 cos θ

Can mathematical solutions
suggest antenna designs?
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Conclusions

I Forward scattering and/or
optimization to determine bounds on
D/Q for arbitrary shaped antennas.

I Closed form solution for small
antennas.

I Performance in the polarizability of
the antenna structure.

I Forwards scattering and optimization
approach coincide for ka→ 0.

I Lagrange multipliers to solve the
optimization problem for larger
structures.

I D/(Qk3a3) nearly independent on ka
for 0 < ka < 1.5.

I Optimal current distributions.
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