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Trade-off: bandwidth versus performance for metamaterials

I Perfect lenses: bandwidth and resolution?

I Cloaking bandwidth and (extinction) cross
section?

I High impedance surfaces: bandwidth,
impedance, and thickness?

I Extra ordinary transmission: bandwidth,
transmittance, and aperture fraction?

I Antennas: bandwidth, gain, and size?

Here, we construct integral identities (sum rules)
and physical bounds using properties such as
causality, linearity, passivity, and time translational
invariance to analyze these questions.
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High-impedance (artificial magnetic) surfaces

I PEC surfaces have low impedance,
i.e., short circuit currents give Z = 0.
They also have reflection coefficients
Γ = (Z − Z0)/(Z + Z0) = −1.

I PMC surfaces have high impedance
and Γ = 1 (no phase shift).

I Useful for low-profile antennas ,i.e.,
planar antenna elements can be
placed above a PMC.

I Also useful to stop surface waves, cf.,
hard and soft surfaces.
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High-impedance surfaces
are often composed by
periodic structures
above a PEC ground
plane, here a mushroom
structure.

For what bandwidth can a periodic structure above a PEC plane
have ’high’ impedance (reflection coefficient Γ ≈ 1)?
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’Simple’ high-impedance surface

I A PEC ground plane at the
distance d = λ/4 (quarter
wavelength) gives a high
impedance.

I Here, we use the (normalized)
admittance Y = Z0/Z to
quantify the bandwidth where
|Y | < ∆.

I Note that ReY = 0 for lossless
structures.

I Construct P∆(Y ) such that
P∆(Y ) = 1 if |Y | < ∆.

I We show that the area under
the blue curve (lower figure,
∆ = 1/2) is π (a sum rule).
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Sum rules and physical bounds

1. Find a (time domain) passive system (passive imply causal).
Represent with either:

I Impedance Z(s), where ReZ(s) ≥ 0 for Re s > 0 and Z(s)
analytic for Re s > 0.

I Reflection coefficient Γ (s), where |Γ (s)| ≤ 1 for Re s > 0.

where s = σ + jω (cf., Laplace transform).

2. Determine the low- and high-frequency asymptotic for Z(s).

3. Have sum rules (integral identities), in particular with
Z(s) ∼ a1s as s→̂0 and Z(s) ∼ b1s as s→̂∞

2

π

∫ ∞
0

ReZ(jω)

ω2
dω = a1 − b1 ≤ a1

Do not need to know the high-frequency limit for a bound.

Sum rules and constraints on passive systems J. Phys. A: Math. Theor. 44 145205, 2011
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Low-frequency scattering (κ→̂0)

Replace the ground plane with
an incident wave and a mirror
object.
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Use κ = σ + jk, where
k = ω/c0 is the wavenumber
and σ > 0.

I Reflection coefficient

Γ (κ) ∼ −1 + κ
(
2d+ γ/A

)
,

where γ/A is the magnetic
polarizability per unit cell.

I Normalized impedance has

Z(κ) =
1 + Γ (κ)

1− Γ (κ)
∼ κ(d+ γ/(2A))

I Bound

d+ γ/(2A) ≤ µmax
s d

where µmax
s is the maximal (static)

permeability in the structure.
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Sum rule for |Y | < ∆

Interested in the bandwidth where

|Y | = 1/|Z| < ∆

Solution:

I map |Y | < ∆ and ReY = 0 to 1.
I compose with a positive real (PR)

function, P∆, that has

ReP∆(jk) =

{
1 −∆ < k < ∆

0 |k| > ∆

That is

P∆(κ) =
1

π

∫ ∆

−∆

1

jξ + κ
dξ =

1

jπ
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Sum rule for |Y | < ∆

Asymptotic

P∆(κ) ∼

{
1, as κ→ 0
2∆
πκ , as κ→∞

The composition P∆1(κ) = P∆(Y (κ))

P∆(Y (κ)) ∼

{
2
πκ(d+ γ/(2A))∆ κ→̂0

o(κ) κ→̂∞.

Sum rule (n = 1 identity)∫ ∞
0

ReP∆(Y (jk))

k2
dk =

(
d+

γ

2A

)
∆.

i.e., the area under ReP∆(Y (jk))/k2 is
known.
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Sum rule and bound

The integral identities for PR function give
the n = 1 sum rule∫ ∞

0

ReP∆(Y (jk))

k2
dk =

(
d+

γ

2A

)
∆.

It is convenient to rewrite it into∫ ∞
0

ReP∆(Y (λ)) dλ =
(
d+

γ

2A

)
2π∆,

where λ = 2π/k denotes the wavelength.
Bound

Bλ0
d
≤ 4πµmax

s max
λ∈B
|Y (λ)|

{
1 lossy case

1/2 lossless case.
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γ = 0 and ∆ = 1/2 gives π.

Note: the low loss case is close to the lossless case.
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High-impedance surfaces

Physical bound

Bλ0
d
≤ 4πµmax

s max
λ∈B
|Y (λ)|

{
1 lossy

1/2 lossless,

Non-magnetic and max |Y | ≤ 1/2 gives the normalized bandwidth
Bλ0/d ≤ π.
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High-impedance surfaces

The via (PEC cylinder) connecting the patch with the ground has
a negative magnetic polarizability γm/(2Ad) ≈ −0.08. Remove the
via to get a patch structure.

max |Y | ≤ 1/2 gives the normalized bandwidth
Bλ0/d ≤ π − 0.08 ≈ 3.06.
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Sum rules and bounds on metamaterials

I Transmission blockage: low
transmission for low-pass
structures.

I Extinction cross section:
scattered and absorbed power
for low-pass structures.

I Extraordinary transmission for
thin structures.

I Superluminal transmission
(n < 1).

I Perfect lens (εr = µr = −1).
I Absorbers: absorption over a

bandwidth.
I Antennas: bandwidth for given

size.
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Extraordinary transmission through PEC sheets

Over what bandwidth can at least 80% of the power be transmitted?
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I Construct a sum rule for |T |2 ≥ 0.8, i.e., ∆ = 0.5 below∫ ∞
0

Im{h∆(h(λ))} dλ =
γ∆π

A

I Example with an aperture array of SRR in a PEC sheet.
I The area under Im{h∆(h(λ/`))} is known: 1.56.
I Bandwidth with |T |2 ≥ 0.8 is ≈ 1.1 (bound 1.56).
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Extraordinary transmission: arrays of SRR
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I Focusing of power |T |2A/A.

I Increase the unit cell size,
A = `2, with ` = 2.5, 5, 7.5.

I Aperture areas 31%, 8%, 3%.
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Perfect lens

Lens
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I Metamaterials realized as periodic structures.

I For what bandwidth is it possible to design a periodic
structure that has the properties of a perfect lens?

I Bounds on the temporal dispersion of εr(ω) and µr(ω).

I Bounds on all periodic realizations with Γ ≈ 0 and T ≈ ejkd.
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Passive constitutive relations

The linear, causal, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are

D(t) = ε0ε∞E(t) + ε0

∫
R
χee(t− t′)E(t′) dt′

where χee(t) = 0 for t < 0, the dependence of the spatial coordinates is
suppressed, and ε∞ > 0 is the instantaneous response. Passive if

0 ≤
∫ T

−∞
E(t)·∂D(t)

∂t
dt = ε0

∫ T

−∞

∫
R
E(t)· ∂

∂t

(
ε∞δ(t−t′)+χee(t−t′)

)
E(t′) dt′ dt

for all times T and fields E.

I Similarly for the magnetic fields.
I The presented results are also valid for the diagonal elements of

general bi-anisotropic constitutive relations.
I Time-domain model, e.g., used in FDTD.
I Fourier transform to get the frequency-domain model

D(ω) = ε0ε(ω)E(ω). Passivity imply that h(ω) = ωε(ω) is a Herglotz
function, i.e., h(z) is analytic and Im{h(z)} ≥ 0 for Im z > 0.
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Constraints on the temporal dispersion of metamaterials

Answered Question

What is the minimum temporal dispersion of passive materials over
bandwidths B = [ω1, ω2]?
Want e.g., permittivity ε(ω) ≈ εm (similarly for µ(ω) and n(ω))

Solution

I no limitation for ε∞ ≤ εm ≤ εs (static value).

I limitations for εm ≤ ε∞ = ε(∞) (instantaneous value).

max
ω∈B
|ε(ω)− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case

1 lossless case,

where B = (ω2 − ω1)/ω0 and ω0 = (ω1 + ω2)/2.

I limitations for εm ≥ εs = ε(0) (static value).
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Example: Drude model
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Sum rule∫ ∞

0
Imh∆1(ω) dω =

ω0∆

ε∞ − εm

The Drude model

ε(ω) = 1 +
1

−iω(0.01− iω)
,

has ε(ω) ≈ −1 = εm for ω ≈ 0.7.

I The area under Imh∆1(ω) is
concentrated to the region
where |ε(ω)− εm| ≤ ∆.

I This area is known

ω0∆

ε∞ − εm
≈ 0.7 · 0.4

1− (−1)
= 0.14

I area ≈ height × width gives the
bandwidth, i.e., bandwidth
≈ 0.14.
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Temporal dispersion: constraints

Interval B = [ω1, ω2] with fractional bandwidth B = (ω2 − ω1)/ω0,
ω0 = (ω1 + ω2)/2
εs =static, ε∞ =instantaneous, εm =target values.
1. εm < ε∞:

max
ω∈B
|ε(ω)− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case

1 lossless case,

2. without static conductivity

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B

1 +B/2

εs − εm
εs − ε∞

{
1/2 lossy case

1 lossless case,

3. artificial magnetism µm > µs

max
ω∈B

|µ(ω)− µm|
|µ(ω)− µ∞|

≥ B

1 +B/2

µm − µs
µs − µ∞

{
1/2 lossy case

1 lossless case,

Sum rules and physical bounds on passive metamaterials, New Journal of Physics, Vol. 12, pp. 043046-, 2010.
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Conclusions

I Sum rules for high-impedance surfaces, extraordinary
transmission, and temporal dispersion.

I Often polarizability of the structure.

I Physical bounds on the bandwidth.

I They are all extreme cases, e.g., T = 0 or T = −1 for the
low-pass FSS (T (f = 0) = 1), T = 1 for the bandpass FSS
(T (f = 0) = 0), and T = ejkd for the negative refractive
index (wrong direction for the phase).

Why physical bounds?

I Realistic expectations. Possible/impossible.

I Possible design improvements. Is it worth it?

I Figure of merit for a design.
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Static and instantaneous parameter values

The static, e.g., εs = ε(0), and instantaneous (or high frequency),
e.g., ε∞ = ε(∞), values are used in the bounds. Some properties
of the static properties are known:

I The static permittivity and permeability are well defined.

I Can be determined by homogenization techniques.

I The effective material parameters are bounded by the
parameters of the included materials.

Instantaneous (or high frequency) properties:

I Hard to define for heterogeneous materials.

I Necessary in time-domain constitutive relations, cf.,
well-posedness of the PDE and FDTD simulations (time step).

I Often suggested that ε∞ = 1 and µ∞ = 1 (contradictions
with diamagnetism, µ∞ < 1).

I Often suggested that
√
ε∞µ∞ = n∞ ≥ 1 (wavefront speed

less than the speed of light in vacuum).
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